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Abstract

Parliamentary debates are highly structured transcripts of meetings of politicians in par-
liament. These debates are an important part of the cultural heritage of many countries; they
are often free of copy-right; citizens often have a legal right to inspect them; and several coun-
tries make great effort to digitize their entire historical collection and make it available to the
general public. This provides many opportunities for the Information Retrieval community.

In this paper, we analyze the structure of parliamentary proceedings and sketch a widely
applicable DTD. We show how proceedings in PDF format can be transformed into deeply
nested XML.

Having the proceedings in XML makes a wide range of applications possible. We elaborate
on five applications: entry point retrieval, advanced content and structure search; automatic
creation of tables of contents and hyperlinked navigation menus; graphical result aggregation;
large savings on storage space and bandwidth for scanned documents.

1 Introduction

Parliamentary proceedings are an interesting set of data to apply state-of-the-art information
retrieval technology. Parliamentary proceedings are written records of parliamentary activities
containing a wide range of document types. In English, these proceedings are usually called
Hansard, after the publisher Thomas Curson Hansard, who first (illegally) printed proceedings
of the British parliament. In this paper we only discuss notes of meetings of parliament. As
with all meeting notes, these records have the purpose of storing the content of the meeting.
They have varying degrees of detail. Currently in most Western democracies it is common to
transcribe everything that is being said, keeping the content, but making it grammatically correct
and pleasant to read.

We list a number of characteristics which make these documents of special interest to the
Information Retrieval community:

• Large historical corpora; For example, in Holland all data starting from 1814 will be available
in 2010 (at the time of writing it is available since 1917) [http://www.statengeneraaldigitaal.
nl]; for the Flemish parliament all data since 1971 is available in PDF [http://www.
vlaamsparlement.be/]; the British Hansard archives have all parliamentary minutes since
1803 available in XML [http://hansard.millbanksystems.com].

• documents contain extensive and consistently applied structure which is rather easy to ex-
tract and make explicit;
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• transcripts of meetings might be accompanied by audio and video recordings, creating in-
terconnected multimedia data [23];

• challenging data integration issues and opportunities [17, 12, 18] both within one country
(collections from different periods, in different formats, styles, language, . . . ), and across
countries (cross-lingual IR);

• natural corpus for content and structure queries, combining keyword search with XPath
navigation and selection [14, 20];

• natural corpus for search tasks in which the answers do not consist of documents: expert or
people search [4], video search and entry point retrieval [24].

• the size of the corpus and of the individual documents calls for result aggregation and
summarization [19].

From this list, this paper treats the information extraction, data integration, result summarization
and entry-point retrieval aspects.

The paper is organized as follows: Section 2 describes the structure of parliamentary meetings
and formalizes it in a DTD. Section 3 describes the Extract-Transform-Load process with which
we transform the notes into XML. It also contains an evaluation of the quality of this process.
We discuss five applications of structured data in Section 4 and conclude in Section 5. A search
engine containing all Dutch parliamentary data from 1984 till May 2008 is built and can be used
at http://www.polidocs.nl. The corpus of over 80.000 XML files is avaliable from that URL.

1.1 Advanced information access to cultural heritage

Parliamentary proceedings are an important part of each country’s cultural heritage. Because the
proceedings are “just” text documents one could expect that modern IR technology is being used to
make the proceedings easily accessible to researchers and the general public. Unfortunately this is
not the case, at least not in the Netherlands, Belgium, Germany and the UK. In all these countries,
the parliaments have created websites which allow the public to search in the proceedings. But,
even though these are vertical search engines restricted to documents under control by the owners
of the search engine, the quality of the interface and of the search results is much lower than
Google.

The most important reason for this low quality is a mismatch between the unit of retrieval used
in these systems and the natural answer unit. The unit of retrieval in all these countries is the
complete verbatim proceedings of one day. These are very large documents covering a multitude
of topics. In the Netherlands an average of 50.000 words are spoken each day. The natural answer
unit for a vertical search engine containing meeting notes are agenda-topics, or even more detailed,
speeches by members of parliament. Because these much smaller answer units are more likely to
be about one topic, they are easier to rank, and easier for users to assess as relevant.

Advanced information access to meeting notes thus needs to have the structure of the meeting
explicitly available. The main contribution of this paper is to show that this structure can be
extracted robustly (also from legacy data), and that the availability of the structure makes it
possible to create true information access to heritage data.

2 Structure of parliamentary proceedings

Notes of a formal meeting with an agenda (e.g., business meeting, council meeting, meeting of the
members of a club, etc) are full of implicit structure and contain many common elements. The
notes of meetings with a large historical tradition, like parliamentary debates, are in a uniform
format which fluctuates little with time. This makes these notes very well suited for text-mining.

To our knowledge, at the time of writing, there is no generally agreed upon DTD or markup
language available for (parliamentary) meeting notes.
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Transcripts of a meeting contain three main structural elements:

the topics discussed in the meeting (the agenda);

the speeches held at the meeting: every word that is being said is recorded together with 1)
the name of the speaker, 2) her affiliation and 3) in which role or function the person was
speaking;

non verbal content or actions These can be:

• list of present and absent members;
• description of actions like applause by members of the Green Party ;
• description of the outcome of a vote;
• the attribution of reference numbers to actions or topics;
• etc.

The analogy with the structural elements in theatrical drama is striking: scenes, speeches and
stage-directions are the theatrical counterparts of the three elements just listed. These are promi-
nent elements in the XML version of Shakespeare’s work.1 The close relation between politics and
drama is an emerging theme in political science, see e.g., [13, 11].

These elements are structured as follows:

meeting −→ (topic)+
topic −→ (speech | stage-direction)+
speech −→ (p | stage-direction)+
p −→ (#PCDATA | stage-direction)*
stage-direction −→ (#PCDATA).

All elements contain metadata stored in attributes. The British digitized debates from 1803 to2004
are available in XML and basically have this structure.

Within the Dutch proceedings however there is an intermediate structural element —the
block— which distinguishes the theater drama from the political debate. In Dutch parliament, the
debate on each topic is organized as follows: each party may hold a speech by a member standing
at the central lectern; other members may interrupt this speech; the chairman can always inter-
rupt everyone. Most often, when all parties had their say at the central lectern, a member of
government answers all concerns raised while speaking from the government table; again he or she
can be interrupted. In most cases this concludes a topic, but variations are possible and do occur,
e.g., several members of government speaking or a second round of the whole process.

The block is an important debate-structural element because it indicates who is being attacked
by the interrupters. Thus for the Dutch situation the DTD becomes

topic −→ (block)+
block −→ (speech | stage-direction)+

If this block structure is not present in meeting notes, then each topic contains exactly one block.
Thus also such notes fit this DTD.

Note. For presentation purposes, the DTD presented here is the core of the model. The DTD
actually in use contains additional elements and attributes for storing all kinds of metadata.

Figure 1 contains a visualization of a one-topic debate using the block structure. It is created
with an XSL-stylesheet from the XML. Each row stands for one block and each vertically posi-
tioned mouth stands for one speech. The size of the mouth is proportional to the length of the

1http://metalab.unc.edu/bosak/xml/eg/shaks200.zip One of the referees pointed out the well-documented
DTD for drama which is part of the TEI guidelines for text markup (http://www.tei-c.org/release/doc/
tei-p5-doc/en/html/DR.html). This DTD is a good starting point for modelling, but for our purposes both
too general and too specific.
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Figure 1: High-level visualization of the first part of the debate on the protection of Hirsi-Ali. Origi-
nal available at http://www.geencommentaar.nl/parlando/index.php?action=doc&filename=
HAN8183A16. The first speaker on the lectern is Halsema who is interrupted by Van Haersma
Buma, Verdonk, Griffith, Van der Staai and Wilders, in that order. The name of the speaker is
only shown at her first interruption.

speech measured in number of words. The speaker on the central lectern has the red mouth, the
interrupters have a blue mouth. Interruptions by the chairman are not shown.

We end this section with two more observations on interesting structure in debates, also visible
in Figure 1:

1. Blocks consist either of one uninterrupted speech or they have the form (red,blue)+,red,
that is a sequence of pairs of speeches by the central speaker and an interrupter ended by
the central speaker.

2. Zooming in on a block, if A is the speaker at the lectern and B,C,D are the ones interrupting
A, then blocks very often look like (AB)+(AC)+(AD)+A, i.e., a sequence of small conversations
with different members with A having the last word.

Debates in the Dutch parliament are governed by a set of written regulations and a set of
unwritten codes. Both the observations above are instantiations of unwritten codes. The first
observation restates the rule that the speaker at the lectern always has the last word. The second
observation corresponds to the rule that a member of parliament may only once make a block of
interruptions of a(nother) member at the central lectern. See [26] for these rules. Another rule
is that someone may only interrupt another 3 times in a row. So according to these unwritten
codes the second regular expression should be (AB){1,3}(AC){1,3}(AD){1,3}A and none of B,C,D
should be equal.

Formalizing these written and unwritten rules in terms of regular expressions, and using them
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Figure 2: Example of the mapping from the description of a debate in PDF to the version in XML.
Note how the start of a new block is indicated by a ! (mapping indicated in yellow).

to find violations is an interesting future direction of research.2
This internal structure of blocks can be used to create high-level overviews of debates that

show who interrupts whom and which can be used for navigation. We present an example in
Section 4.3. The regular expression which best fits or describes a block can be obtained by the
algorithm which induces DTD’s from a set of example XML-files described in [6].

3 Extracting structure: from flat PDF to deep XML

All documents contain structure. Often we can easily recognize titles, paragraphs and page num-
bers on the basis of their layout (e.g., position or size) and their content (e.g., a number) for
example. This structure is often not explicit in digital form, especially not when the document is
scanned and OCRed. If the structure of documents in a corpus is standardized to some degree,
the structure can be made explicit in digital form automatically [7].

The Dutch parliamentary proceedings shows this kind of standardization of document struc-
ture. All elements of a proceeding, for example topics and speakers, are represented in their own
distinct way. This enables the automatic recognition of these elements. We programmed the text
and structure extraction as an Extract-Transfer-Load process [21] consisting of eight steps.

Figure 2 gives a good indication of the mappings created in the transformation process.
2We have found such violations with Dutch members of parliament who have a new debating style like Wilders

and Verdonk.
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First we extract the text from the PDF using the open source program pdftohtml3 with the
-xml option. This yields an XML file with, for each line of text, four coordinates which indicate
the bounding box of that text. Multiple columns are detected and preserved. Some font and
layout information is preserved but not all. The XML structure is simple and flat:

root −→ (page)*
page −→ (text)*
text −→ (#PCDATA,b,i,span)*

The second step involves cleaning the XML output from pdftohtml. We make sure that the
file is well-formed XML and we solve problems with diacritics and character encodings. In this
step, we also fix the most common and recurring OCR errors. We found one specific error quite
often: a space inserted before the last letter of a word. For example, the token wij is OCRed as
wi j. We repair this mistake with a regular expression.

The values indicating the position and size of the bounding box of the text are normalized in
the third step because they vary depending on the device used.

In the fourth step, we analyze the document’s layout. The margins, the number of columns
and the header and footer are detected and marked. For this, we use the position of the text
elements and the (deducted) position of the whitespace. Using this information, we sort the text
of the body (i.e., not including the header or the footer) in reading order in the fifth step.

During the sixth and seventh step, different markers are placed in the text to signal the start
of different elements in the document. In the sixth step we place markers indicating the position
of text elements in the document. We place markers on places where paragraphs begin (they are
indented), where there is whitespace and where a new column starts. This information is used in
the seventh step where semantic markers are placed based on the content of the document. In
the seventh step we use regular expressions to recognize standardized structure. The start of a
statement for example, is represented as follows:

Mevrouw Swenker (VVD):

This adheres to the following structure: title, last name, party name within parenthesis, colon.
This is then followed by the statement this person made. The start of a statement can only begin
after a whiteline marker or the start of a new column. We convert this to the following semantic
marker

<speechstart speaker=’Swenker’ party=’VVD’ .../>,

with the . . . containing additional information.
The output of this step is an XML document that is flat and contains markers that mark

the beginning of structural elements, but not the end. In the last step we determine the scope of
paragraphs, speeches, blocks, topics and other structural elements. We simply replace the markers
by XML tags that enclose the entire element and nest the elements appropriately. This is done by
performing a cascade of groupings starting with the elements that need to be most deeply nested:
the paragraphs p. XSLT 2.0 has a very useful command for this task: xsl:for-each-group. This
command, new in XSLT 2.0, replaces the so-called Muenchian method which was often used in
version 1.0 of XSLT [16].

The result is an XML file with the same text as the original document but with explicit
structure. The file is valid with respect to the DTD described in the previous section.

3.1 Evaluation

To deal with OCR-errors in the input data, the patterns which trigger the placing of markers
have to be more flexible than indicated above. This introduces errors in the transformation. [10]
contains an evaluation of the quality of the transformation process. Table 1 from [10] shows the
percentage of correctly marked elements for seven of the most important structural features.

3http://pdftohtml.sourceforge.net/
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Feature Score comments
Topics 77,8% All recognized, but in 22.2% included too much text
Blocks 100%
Speakers 88.7% Caused by OCR errors
Paragraphs 93.5%
Header 91.5% Caused by OCR errors
Footer 92.5% Caused by OCR errors
Stage directions 73.5%

Table 1: Percentage of correctly extracted structural elements; evaluation done on two complete
days of proceedings (50 pages).

4 Applications of the XML structure

We describe five applications of the XML structure. None of these applications is possible when
working with the unstructured text data. The applications are entry point retrieval and the use of
permalinks, complex content and structure queries, automatic creation of tables of contents and
navigation menus, graphical result aggregation, and savings on bandwidth.

4.1 Entry point retrieval and permalinks

The most natural answer unit in a retrieval system for parliamentary debates is the speech. The
result page after a keyword query then will be a ranked list of items consisting of the name of
the speaker, her party, a photo of the speaker, the date of the speech, a relevant text snippet
of the speech, a hyperlink which points to the anchor attached to the speech within a debate,
and a hyperlink to the original PDF source. This is how it works in the UK on the site http:
//www.theyworkforyou.com, on the site of the European Parliament, and also in the retrieval
engine that we built for the Dutch data http://www.polidocs.nl.

Though natural, this notion of answer is by no means standard for parliamentary retrieval
systems. The search systems of the German and Flemish parliaments return the proceedings of
one day. These can be PDF files with two columns of up to a 100 pages. In the Netherlands, the
situation is even more complex:

• proceedings before 1995 are available at http://www.statengeneraaldigitaal.nl/. The
answer unit is the proceedings of a complete meeting;

• proceedings after 1995 are available at http://parlando.sdu.nl/cgi/login/anonymous.
The answer unit roughly corresponds to one topic. It is indeed roughly as topics almost
never start at the top of a page nor finish at the bottom of a page, and the PDF documents
at Parlando are divided into overlapping sets of pages;

• preliminary proceedings are available at http://www.tweedekamer.nl/. Search is not really
possible on this site. Preliminary proceedings are available in HTML which is shown together
with a navigation menu which contains the same topic–block–speech hierarchy as described
in Section 2.

During the transformation from PDF to XML we add a unique anchor ID to every speech. The
ID is structured as a Digital Object Identifier (DOI) [8]. This ID thus is like a Uniform Resource
Identifier (URI) and constitutes a unique permanent reference to each speech, in line with the
recommendations on publishing government data by the W3C [3, 5].

The permanent hyperlinks (permalinks) for each speech made in parliament have many ap-
plications besides making entry point retrieval possible. Examples are easy referencing in emails,
weblogs and even scientific papers. Permalinks also stimulate third party development of websites
(such as mashups) based on this data [2].
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Figure 3: Google chart created by an XQuery run over the XML dataset. The XQuery and the
code to produce the figure can be found in [1].

4.2 Complex content and structure queries

The explicit XML structure allows one to formulate information needs using natural XPath,
XQuery, XSLT or NEXI [14, 20] expressions. We illustrate this with some examples:

• give speeches about Islam from debates about immigration can be formulated as the NEXI
query
//topic[about(.,immigration’)]//
speech[about(.,’islam’)].

• give all speakers who interrupted Geert Wilders during the Islam debate can be formulated
in XPath 1.0 as //topic[@title=’islam’]//block[@speaker=’Wilders’]
//speech[@speaker != ’Wilders’]/@speaker.

• give a list of these speakers together with their number of interruptions ordered by that number
is expressed in XQuery or XSLT using the structure of the XPath expression from the last
bullet and the fn:count() function.

• Create a cross table of speakers at the lectern and their interrupters and list the number
of interruptions in each data cel is a typical task for XSLT. The result for the Algemene
Beschouwingen on September 17 2008, containing 624 speeches in one debate, is reproduced
in Table 2.

Information science students find it easier to formulate such complex queries in XSLT or XQuery
directly on the original XML files than to state them in SQL on a relational representation of
a debate [1]. [1] contains the XQueries needed to answer the rather complex temporal analysis
questions from [22]. The XQueries output a csv-file with all hits on a query and the code to
produce a Google-chart, as in Figure 3.

4.3 Automatic creation of tables of contents and navigation menus

The notes of a one day meeting of Parliament are long, averaging 50.000 words and typically
between 50 and 100 pages two column PDF. In Belgium, Germany and The Netherlands, these
are the documents returned to users. Unfortunately these documents do not contain a table of
contents listing the topics discussed in a meeting. But even if tables of content were available
they would be of little help when browsing these documents on a computer because they do not
contain hyperlinks.

Since the topics are explicit elements in the XML version of the data it is straightforward to
generate a hyperlinked table of contents automatically for each document. This can be done with
XSLT. Alternatively one can create table of contents which also summarize part of the debate
structure. In fact the debate timelines in Figure 1 are navigation menus: each mouth contains
a hyperlink to exactly that part of the proceedings which record the speech represented by the
mouth. This is possible because we created a permalink for every speech. These navigation menus
are devices to provide focussed access to XML data [9, 25].
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Table 2: Who attacks whom in the debate Algemene Beschouwingen on September 17 2008.
Speakers at the lectern are listed in the first column; their attackers on the top row. The numbers
in the cells indicate how often the person on the x-axis interrupted the speech by the person on the
y-axis. The numbers on the diagonal (in gray) are the number of answers to interruptions given by
the speaker on the lectern. Source: http://staff.science.uva.nl/~marx/politicalmashup/
AB2008/DebatstructuurAB2008.html.

4.4 Result aggregation

Result aggregation and aggregated search [19] are important when there are many relevant hits
and when hits themselves Parliamentary proceedings are large complex documents. Even one
topic can be quite long. For instance, the meeting of September 18, 2008 took the whole day,
consisted of 624 speeches with a total of 74.068 words, all within one topic. Figure 1 provides one
possible way of visually summarizing this data. Table 4 gives a higher level summary, indicating
who interrupted whom and how often. This table can also be presented graphically in the form
of a social network, as is done in [15].

4.5 Savings on bandwidth

The Dutch parliamentary data from before 1995 was only available in printed form. Within the
StatenGeneraalDigitaal project of the Dutch Royal Library this data is scanned and OCR-ed,
resulting in complex PDF documents consisting of facsimile images of every page, the OCR-ed
text and a mapping from each word to its position on every page.4

Such files can be enormous in size. For instance, the proceedings on http://resolver.kb.
nl/resolve?urn=sgd:mpeg21:19851986:0000761 are 72 pages PDF. The size of this file is 24
Megabyte. The same proceedings in XML is less than .5Mb, 2% of the original size. Downloading
such large files takes too much time, especially in a search-and-browse use case in which many
candidates must be quickly assessed and discarded. Apart from that, standard PDF readers like
Acrobat become inconveniently slow.

What is a good solution to this problem? One could serve the XML file in conjunction with a
stylesheet that provides a good layout. But for cultural heritage data, the look-and-feel is often
important. Thus one could try to reconstruct the original data but now in digital format.

In [10] we have shown that reconstructing PDF documents from scanned and OCRed data is
feasible and leads to size-reductions of two orders of magnitude. The quality of the recreated PDF
files is very good, and in several aspects better than the original. The most important gain of this
exercise is the reduction in download time from unacceptably slow to instantaneous.

4See http://www.statengeneraaldigitaal.nl/backgrounds.html for extensive information on the digitization
process (in Dutch).
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We believe that the facsimiles need to be available as the ultimate source but that in a search
and browse interaction process with the data the alternative, much smaller, version based on the
XML is preferable. Users get results faster, they get clean hyperlinked files, and they use much less
bandwidth. Once a user knows exactly which document she wants to consult, the large facsimile
PDF can be downloaded.

5 Conclusions

We have shown that text extraction from Parliamentary proceedings based on regular expressions
and XSLT is feasible, scalable, possible on both digital and scanned data, and leads to numerous
benefits.

We stress that this extraction process is transparent, repeatable and independent of any soft-
ware or hardware because we only use declarative programming languages with a well described
semantics. This means that when the extraction scripts (which are themselves XML files, since
it is XSLT) together with a copy of the XSLT reference [16] are stored together with the original
digitized data in a safe place, it is in principle always possible to recreate the XML versions we
have described here.

Several parliaments are digitizing their complete historical data. We are aware of efforts in the
UK, Ireland, Australia, and the Belgium Parliaments. Our DTD is general enough to fit all these
proceedings. This opens the possibility of creating a huge integrated multi-lingual XML repos-
itory of parliamentary proceedings. Such a repository will facilitate comparative parliamentary
(historical) research.
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