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Abstract 
Scientific research collaborations generate massive amounts of data that are assembled 
into collections, published in digital libraries, processed in data analysis pipelines, and 
preserved in reference collections.  Policy-based data management systems minimize the 
amount of labor needed to manage the massive collections by automating the 
enforcement of management policies and the validation of assessment criteria.  The goal 
is data management infrastructure that can be used to support all phases of the data life 
cycle, while minimizing the amount of labor needed to maintain the collection. 
 
1. Introduction:  
With the ongoing explosion of data creation in digital form, digital repositories are being 
deployed in large-scale virtual environments [1]. Such repositories allow data sharing 
across research communities as well as provide information for public users. An 
important aspect of such open repositories is that they are geographically dispersed 
operating under autonomous administrative and disciplinary boundaries. Such 
repositories also interact with distributed computational services (such as super computer 
centers [2] and cloud computing providers [3]) and disperse information through 
collaborating social communities and portals [4].  The requirement to provide a unified 
open repository framework -integrating and spanning multiple autonomous repositories -  
leads to challenges that encompass strategic problems in data management across the 
entire lifecycle of information - from supporting the creation and management of digital 
content, to enabling use, re-use, and interconnection of information, to ultimately 
ensuring long- term preservation and archiving. 
 
Multiple open repositories are being assembled by scientific and humanities groups. They 
are bringing together data from distributed researchers in order to provide a single 
uniform accessible portal that can be used by researchers and public alike. Some of the 
national and international efforts with these goals are as follows: 
• Astronomical data: The National Virtual Observatory  [5] is assembling standard 

mechanisms for sharing catalog information and sky survey images.  They have 
established interoperability mechanisms for querying catalogs and for accessing data 
within a storage system. 

• Oceanographic data: The Ocean Observations Initiative [6] is exploring the 
integration of cloud computing systems and cloud storage caches with institutional 
repositories.  One goal is to manage extraction of previous observations from an 
archive, caching of the data on a cloud resource, and on –demand analysis of the data. 



• Plant data: The iPlant Collaborative [7] is federating existing data collections to 
create a community-driven research environment.  One goal is to enable multi-
disciplinary research and manage data re-use across disciplines. 

• Science of Learning Centers: The NSF Science of Learning Centers [8] support six 
research areas in cognitive science.  They have the challenge of both sharing data 
within a research area, and sharing data between research areas. 

• Biomedical data: The Biomedical Informatics Research Network [9] is building a 
public data repository for sharing brain images. 

• Hydrological data: The Consortium of Universities for the Advancement of 
Hydrologic Science (CUAHSI) organizes point observation data into a shareable 
resource and provides tools for displaying and analyzing water data [10]. 

• Earth Systems Data: DataOne[11]  is an NSF datanet initiative that will provide 
universal access to data about life on earth and the environment. 

• Scientific Computation: The NSF TeraGrid manages simulation output, providing 
both high-performance access for post-processing, as well as a long-term archive. 

• HASTAC: The Humanities, Arts, Science and Technology Advanced Collaboratory 
promotes new platforms for social interaction. 

• Odum Institute for Research in Social Science maintains an archive of computer-
readable social science data, and supports discovery and controlled access to the 
collections. 

• ARCS: The Australian Research Collaboration Service provides long-term eResearch 
support through federation of shared collections across research institutions in 
Australia. 

• NARA TPAP: The National Archives and Records Administration Transcontinental 
Persistent Archive Prototype is a research platform for investigating preservation 
principles. 

• NCCS:  The NASA Center for Computational Science provides simulation tools and 
organizes the output into shareable collections. 

• UK eScience data grid builds shared collections and manages an archive for research 
results.  
 

Additional large scale data sharing initiatives are under design and development. These 
include: 
• LSST: The Large Synoptic Survey Telescope is developing a data grid to manage 

transport of 150 petabytes of images from a telescope in Chile to the US, analysis of 
the images, and archiving of the data. 

• NCDC:  The National Climatic Data Center is building a data grid to manage 150 
petabytes of satellite images of the earth.  The data grid will link computing resources 
with data archives. 

• CERN LHC: The Large Hadron Collider experiment will generate 15 petabytes of 
data per year, and distribute the data around the world to data analysis platforms. 

 
The common concerns of these projects are for immediate sharing and discovery of data 
among collaborating researchers and to provide reference collections for long-term 
preservation to enable future research. Because of the challenges in integrating data from 
diverse projects (working in the same discipline and hence having an imperative to share) 



a coherent open repository framework is necessary. We describe such a framework, 
developed within our group, which is being used by several research initiatives for 
sharing data and also being evaluated by other groups for eventual adaptation.  
 
Our approach to information lifecycle management for building an open repository 
framework is based on policy-oriented data management. Our thesis is that different 
stages in an open repository lifetime can be realized by a sequence of policy applications. 
These discrete policy sets in turn abide by the requirements of individual repositories that 
form the collaboratory framework, encode trust relationships among these repositories 
and enable smooth interactions among repositories as well as collaborating social 
communities. The outcome of this thesis is the development of a software framework 
called the integrated Rule-Oriented Data System (iRODS) [12] being developed by the 
Data Intensive Cyber Environments (DICE) group [13] with collaborations from various 
groups and projects all around the world.  The iRODS system is a data grid [14] that 
spans geographically remote sites and supports a policy-oriented life cycle management 
for digital artifacts.                                                                    
 
In the next section, we briefly discuss the iRODS system, and in Section 3 we develop 
the concept of an iRODS Open Repository framework. In Section 4, we show an 
exemplar open repository that is being developed by the Temporal Dynamics of Learning 
Center, and conclude in section 5. 
 
2. The iRODS System 
The iRODS [15] data grid can be viewed  (see Figure 1) as a network of completely 
connected nodes of resource servers, called iRES servers that provide access to data and 
computational resources.  These servers perform the protocol interchange that is needed 
for interfacing with exotic devices and map their protocols onto a uniform API that is 
used by the client framework.   
 
The iRES servers are the workhorse of 
the grid and perform data movement 
between the servers and between the 
client and the servers. Also they are 
responsible for managing multiple types 
of data transfer modes (parallel, 
sequential, bundled, etc), multiple 
transfer protocols  (XML, binary, 
TCP/IP, UDP, etc.), and operations 
related to manipulation of complex  
collections. iRES servers are also 
responsible for providing data 
management functionality and interfacing 
to other servers described below. 
In addition to the resource nodes there are three other special server nodes.  

• The iCAT is a metadata catalog server that manages a relational database 
containing information (metadata) about the data sets, resources, users, servers, 

 
 

Figure 1.  iRODS Components 



rules and micro-services.   Additional information required for authentication, 
authorization, auditing, accounting, etc. are also stored in the metadata catalog 
server.  There is conceptually only one catalog server per data grid.  The system 
allows one to have multiple catalog servers provided one is in the master mode 
and the rest are in the slave mode. The slave mode catalog servers are used for 
‘read only’ operations and all catalog modifications are automatically directed to 
the master catalog server. The use of master-slave servers is mainly for load 
balancing and reducing access time when going across wide-area networks. All 
servers are aware of the location of the iCAT catalog server. 

• The iXMS is a messaging server that provides a “mailbox” service with store and 
forward capability for messages between the server nodes and the micro-services 
that execute in these resources.  This server node is used by the messaging micro-
services to send, broadcast and receive messages. The server operates in both 
push and pull mode for message delivery.  Even though there is no limitation to 
the number of messaging servers that can be operated in a grid, at least one should 
be operational and its address known to all other servers. 

• The iSEC is a scheduler and execution server that can schedule operations on 
resource server nodes. This server, using information about pre-scheduled and 
queued rules and micro-services stored in the iCAT server, executes them when 
their execution time becomes valid. The server can also check for additional 
success conditions apart from time stamps. If all conditions are met, the server 
can execute the pre-scheduled action; otherwise the server puts the action back in 
the queue with retries being done based on options set by the user and/or the 
administrator.  

The sequence of actions (micro-services or rules) that are performed during a rule 
execution can be viewed as a workflow. Since a rule can have more than one rule-
definition, each of these rule-definitions can be viewed as an alternate “guarded” 
workflow with a priority imposed on the set of definitions.  According to the iRODS 
implementation only one rule-definition “succeeds” when a rule is fired. Each alternative 
workflow is tried in order and if there is a failure of any of the alternative (either because 
the guard condition fails or because of a failure and recovery of the underlying workflow) 
the next rule in the priority list is invoked. If any one definition succeeds, the rule 
invocation is considered to be successful. If all rule-definitions fail then the rule 
invocation is a failure. 
 
There are three kinds of micro-services: 
1) System micro-services are the core services that are used for providing operational 
functions in the resource servers, iRES. These functions include low-level data 
management, data movement (e.g. data replication,  copy, move), integrity and type 
checking  (e.g. checksums such as MD5), collection-level operations, and micro-services 
for providing metadata management, messaging services and  delayed execution and 
scheduling services. They also include services for authentication, authorization and 
auditing and for emailing users. Micro-services for user management, resource 
management and other administrative functions are also provided by system micro-
services. The iRES high level operations (as invoked by the client) translate into a set of 
rule invocations that in turn invoke these micro-services. 



2) Rule-Language Micro-services provide workflow control functions.  The iRODS rule 
language does not provide powerful language constructs which one normally expects 
when building workflows, e.g. loops and conditional forks. Semantically (and in theory) 
these types of constructs can be coded using the simple rule-definition syntax by a rule 
developer. But it is more helpful and useful if syntactic constructs are pre-programmed to 
make it easier for rule programmers to code these complex workflows. The design 
decision in providing these functionalities was not to complicate the rule engine with 
complex rule interpretations, but to provide these functionalities as micro-services that 
are executed by the rule engine. The complexity of managing the workflow constructs 
such as loop variables and if-then-else conditionals is left to the design of the individual 
“rule-language’ micro-services. We support constructs including while, for, 
forEachInList, ifThenElse, output strings and assignment. In addition, constructs for 
remote execution, parallel execution and delayed execution are also coded as micro-
services that can be invoked.  Each construct can execute a chain of micro services 
defined by input parameters. 
3) Domain micro-services are domain-specific functions that are organized in modules of 
micro-services. A community can include as many modules as they need for their data 
system configuration to achieve a required functionality.   
    In iRODS, policies are encoded as rules of the form: 

    A :- C | M1, …, Mn | R1, …, Rn 
where A is the name of the action (rule name), 
           C is the guard condition for the rule to fire 
           Mi is a micro-service or a rule, and 
           Ri is a recovery micro-service. 

Micro-services in iRODS are well-defined C functions that take a set of arguments for 
input and output.  A special argument called the ‘white board’ is also used for 
communicating between micro-services – one can view this as a global structure which 
gets passed intrinsically between the micro-services.  Recovery micro-services are used 
when the sequence of micro-services fails at some point.  The recovery micro-services 
are executed in order to roll back any changes or operations that were performed within 
the rule. The recovery micro-services provide a “transactional” capability for a rule such 
that either the whole rule is executed or the state is rolled back to a point before the 
execution of the rule.  The semantics of the rules is that only one rule is “fully” executed 
on any invocation.  All other rules of the same name that were tried whose conditions fail 
will have been rolled back. The rest of the rules are not tried once the first rule succeeds. 
This semantics is quite different from that of normal logic programming semantics, but 
has relevance to an operational semantics similar to what can be found in Prolog-type 
systems.  The back-tracking through “recovery” micro-service is unique to iRODS and 
was needed so that a data system is not left in a corrupted or unstable state. Programmers 
who write micro-services should be careful to make sure that all actions are recoverable 
and should write corresponding recovery-micro-services. The rule-programmer can then 
use these to define rules. We presume that the rules will be written by scientists and those 
not well-versed in programming, but can work at a pragmatic level based on the 
semantics of the rules and micro-services.  
 
More information on iRODS can be found here [16]. 



2.1 Complexity of iRODS 
The implementation of a consistent, extensible, scalable, and evolvable data management 
system for an open repository requires integration of concepts from a wide variety of 
systems:  data grids, relational databases, active databases and database triggers, logic 
programming and rule systems, server-side workflows, content management systems, and 
distributed operating systems.  Data grids provide a means of accessing distributed 
storage resources using common interfaces with single sign-on for user authentication for 
access to data in diverse resources [30, 31, 32, 33]. Some data grids such as the SRB 
provide an integrated metadata catalog so that one can access replicated copies of files 
using logical names given to files. Others such as EUDataGrid and Globus Data Grid 
provide a tool kit where a user or community can put their own data grid together by 
integrating separate services. The SRB integrated system provides ease of installation, 
administration and usage and provides a uniform low-level API that is used to implement 
higher-order clients. The SRB has been used in multiple projects [34, 25, 35, 36, 37, 38, 
39] and has been shown to handle Petabytes of data and 100s of millions of files.  The 
logical naming paradigm and single sign-on authentication along with third-party 
authorization and metadata catalog services are the main ideas adapted from data grids 
into iRODS.  
 
Relational databases [40, 41] play an important role in iRODS for the implementation of 
the integrated metadata catalog iCAT. In iRODS, as in the SRB, the metadata schema is 
quite complex.  By using ANSI SQL conventions and 3rd Normal Form functional 
dependencies, the iRODS system implements an automatic query generation mechanism 
such that the user is exposed to a universal schema that hides the complexity of the 
underlying multi-table schema.  
   
Rules and distributed rule execution are central to iRODS. The concepts for developing 
the rule language, the implementation of the rule engine and the transactional properties 
of rule execution rely heavily on concepts from active databases and database triggers, 
logic programming and rule systems and their semantics. The rules in iRODS are 
extensions to the Event-Condition-Action (ECA) rules/triggers of active databases [22]. 
The transactional property of each rule is maintained through recovery micro-services 
defined for each rule. This is an extension from the semantics of ECA rules in active 
databases. Triggers in databases use roll-back of database operations through database 
transactions. The semantics of the rule execution in iRODS are similar to that of 
operational semantics of logic programs (or their implementation as in Prolog). Indeed, 
the iRODS rule engine uses the backtracking mechanism of prolog-type languages so that 
when a rule fails, if there is another rule with the same name, then that is tried.  
 
The iRODS rules control execution of a server-side workflow. This is in contrast to 
scientific workflow systems [42, 43] that execute the workflow at a compute server or at 
the client. The iXMS messaging system provides a simple way of distributed workflow 
data exchange. Unlike the Kepler workflow, where the director performs time-slicing of 
operations to enforce a semblance of parallel workflow operations, the system in iRODS 
provides true concurrent execution of the micro-services through the distributed rule 
engine. 



 
Duraspace [20] and LOCKSS [21] are two systems based on digital library technologies. 
LOCKSS  provides a persistent archive by managing multiple copies over the wide area 
network and is used for managing electronic publications across university libraries. 
Duraspace provides middleware for managing metadata and data for digital content.  
Multiple user interfaces have been integrated on top of Duraspace to manage accession 
services for ingesting data. Content management systems, like Documentum [44], 
Alfresco [45], Sharepoint [46], and Stellant [47] provide services needed to 
collaboratively create, edit, review, index, search, publish and archive digital files.  These 
systems work within an enterprise and deliver a single common workflow package for 
managing large-scale and scalable data  systems. A few of the systems also provide some 
form of rule-processing. Unlike iRODS, they do not use the concept of micro-services to 
create definable tasks that can be executed in a distributed chain to achieve a required 
goal.  
 
The iRODS system, because of the aggregation of multiple technologies and paradigms, 
is unique and provides a platform for intelligent and evolvable open repository systems. 
 
3. The iRODS Open Repository Framework 
Open repository systems need an evolvable and scalable system for managing distributed 
data that may be shared by autonomous data providers and administrators. The iRODS 
system provides an ideal system for this implementation. Having presented the system 
description of iRODS, we show how it maps into the logical framework needed for an 
open repository framework. 
 
The fundamental entity of the iRODS open repository framework is the concept of a 
digital data collection (or collection for short.)  A collection is an aggregation of digital 
object that are “gathered together” because of some common logical characteristics. In 
iRODS, the collections form a hierarchical structure with collections having objects and 
sub-collections. The digital objects in a collection are physical objects that are located 
somewhere on the data network but are provided a unique identifier in the collection. The 
combination of the collection-hierarchy path identification and the name of the object in 
the collection together provide a unique data object identifier for each object in the open 
repository. Moreover, each iRODS open repository is given a name (called a zone name) 
that is unique and is registered in a zone authority [17]. The zone name and the unique 
object name in an iRODS collection provide a means for a global unique identifier (guid) 
[18] for each object registered in an iRODS system. The concepts of unique identification 
of digital objects and aggregation of objects into logical collections (for ease of 
browsing) are important features needed in an open repository framework. Moreover, 
these unique identification persist in the metadata catalog (iCAT) and provide a persistent 
identifier even if the object is physically moved from one repository to another. 
 
A collection can span multiple administrative domains and storage locations – i.e., the 
objects in the collection can be owned, curated or administered by different people and 
agencies. The iRODS data grid organizes distributed data into a hierarchy of collections 
of objects that is independent of the location of the objects but provides a logical 



grouping that can be used to enforce uniform management policies across multiple 
administrative and storage domains – again a key need in a collaborative open repository.  
Policies for the open repositories are encoded as rules that govern the various operations 
that are allowed and performed at the collection-level.  Even though the policies govern 
the life-cycle of a collection (and hence its component objects and sub-collections), there 
are other entities that also play an important role in an open repository framework. These 
include  

1. User names, groups of users, resource names and resource pools- defining who 
are the users/owners/curators of collections and objects,  and where the objects 
are located. These entities are also “uniquely” named inside an iRODS system 
independently of their network addresses and iRODS provides the necessary 
mapping. 

2. Internal ontology that provides the schema of the system-wide metadata for the 
collections and other entities of the system (e.g. size and type of objects, role of a 
user (normal user, curator, etc), resource free space, etc) 

3. User and domain specific (extensible) metadata system that captures non-systemic 
metadata needed for discovery and usage. These may include information about 
the object (e.g., telescope settings for an astronomical image), or process-centric 
information (e.g. flags needed by an ingestion workflow process),  

4. A controlled vocabulary (or ontology) for defining and applying access controls 
and fundamental operations that can be performed on collections and objects, 

5. Rule bases that encode the policies of the iRODS system and the micro-services 
(executable functions) that are the building blocks of the action part of the rules. 
 

These entities are also abstractions that map physical names (such as data types and 
network addresses) to uniform logical names unique under the iRODS framework. This 
level of abstraction (or physical transparency) provides a means to design a system that is 
extensible and evolvable in time (the concept is similar to the data transparencies [19] 
provided by relational databases, enabling one to define schemas and queries without 
worrying about the internal implementation structures of the database). An advantage of 
such abstract name spaces in iRODS is that it becomes easier to migrate collections from 
one iRODS system to another as well from another data management system to  iRODS 
and vice versa. The abstraction is also needed for long-term preservation – an important 
aspect of open repositories – as it enables evolution in system design, ontologies and 
implementations. 
 
Our approach of using iRODS to define an open repository framework has several 
significant points of departure from the designs of digital libraries, portals, data grids  and 
cloud storage systems, that makes it more suited for an open repository implementation.  
These include: 

1. Explicit enumeration of the locations in the data management framework at which 
policy needs to be enforced.  The iRODS system defines a minimal set of policy 
enforcement locations that enable the creation of generic infrastructure that can be 
used to support data sharing, data publication, data preservation, data analysis, 
and real-time data streams, by changing the management policies. Since an open 
repository system needs to be customized for each discipline that shares its data, 



the underlying policies can be easily encoded using the iRODS system. Normally, 
in a portal like framework, policy management and repository management are 
kept separate with repository management being performed at the server-side and 
policies for ingestion, curation, sharing and long-term maintenance being done by 
explicit functionality encoded in the portal software. The outcome of a portal-
based approach is that one can communicate with the repository only from the 
blessed portal entry-point and any other access would be completely disabled. In 
the approach taken by iRODS, by plugging in the policy at the server-side as part 
of the integrated repository framework, the client-side system is completely 
differentiated from the policy enforcement system. Hence, any type of client can 
be used (as appropriate for the community) without any penalty in policy 
enforcement. This again provides for multi-disciplinary use, as each discipline can 
choose clients appropriate for their data and usage model.  Appendix A provides a 
list of “policy-enforcement” points in the iRODS system. When building an open 
repository using iRODS, the administrators and data owners can define checks 
and actions to be performed at these policy-enforcement points to customize the 
system for their needs. 

2. Explicit enumeration of micro-services, the modules of executable code from 
which processing workflows can be composed. The need for policy enforcement 
at the repository server side requires one to provide the software functionalities 
that are needed for this purpose. In iRODS, we have defined a core set of such 
functionalities – called  micro-services – that can be used in rules to encode the 
policies of the open repository.  Micro-services can be viewed as well-defined 
software functions or procedures that perform a particular task. For example, 
iRODS has a micro-service for “replicateObject” which can be used to make 
copies of a digital object in two (geographically distant) storage resources and 
record the replication information in a metadata catalog.  Users can discover and 
access the two copies under one logical object name. Another useful micro-
service calculates a checksum for a digital object and stores that information in 
the metadata catalog.  For the iRODS environment to be feasible, the level of 
composition of micro-services needs to be at a high level of granularity to 
simplify construction of procedures that enforce management policy. We list a 
subset of these micro-services that pertain to open repository management in 
Appendix B. 

3. Explicit enumeration of the policies that are being enforced within the data grid.  
The policies that are needed by a community are encoded as iRODS rules which 
are very similar to the ECA rules found in active databases [22]. The policies are 
enforced through a distributed rule engine that is co-located with every storage 
system used within the data grid.  Thus all operations applied by the data grid on 
its digital holdings are executed under the control of rules that are stored at the 
storage resource.  This makes it possible to enforce management policies across 
administrative domains for retention, disposition, distribution, replication, time-
dependent access control, integrity, authenticity, chain of custody, 
trustworthiness, Institutional Research Board access approval, HIPAA 
compliance, provenance. 



4. Explicit enumeration of the types of structured information generated by the 
application of remote procedures.  Since, the micro-services are fundamental 
blocks of policy enforcement, and they are chained together to form rules, 
intercommunication between micro-services is important. This requires a standard 
mechanism for inter-service communication. Similar to WSDL [23], that enables 
communication between web services [24], iRODS uses well-defined structured 
information for communication between micro-services. Since micro-services can 
be launched in multiple repositories that are distributed over a network, 
communication of the structure over the network is also necessary. For efficiency 
of local computation, the iRODS data grid had to be able to store in memory the 
structures generated by a micro-service, for efficient access by a chained micro-
service.  The structures also had to be linearized for transmission over the network 
to a micro-service at a remote location or to the client.  This dual-nature of 
communication is enabled through the development of a mechanism to describe 
each structure, and pack and unpack the structures for transmission.  

5. Explicit enumeration of the state information attributes required to implement a 
data management system.  When micro-services operate, they require two types 
of information – information that is part of the immediate session and information 
that needs to be kept for long-term persistent after the session. The short-term 
session information is stored in the same structure that is used for inter-micro-
service communication. For persistent state information, iRODS uses a metadata 
catalog (called iCAT) that stores persistent information in a relational database 
such as Postgres or Oracle or mySQL. The system provides a means to access the 
persistent information (say for a given data object) using a very simple query 
mechanism which is a subset of the SQL language. Also, each micro-service 
generates state information upon successful completion.  The state information is 
saved to ensure consistent operation of the open repository.  The state information 
constitutes the memory of the system, tracking the status of every record in the 
shared collection. This aspect is also important for open repositories because one 
needs to be able to consistently inform the users about changes being made to the 
system. By analyzing an audit trail, users and curators can track that proper 
operations were performed. 

6. Explicit support for evolution of the data grid, through use of logical name spaces 
for first class objects that include users, files, resources, rules, micro-services, and 
state information.  A major need was the ability to change a management policy 
and the associated procedures, and migrate data from the original collection which 
enforced the original policies, to a new collection managed by new policies.  
Through use of logical name spaces, versions of each first class object can be 
managed.  Within the same data grid, the old rules controlling the old micro-
services that generate the old state information for the original collection can be 
run in parallel with the new rules that control the new micro-services generating 
new state information on a new collection.  A rule can control the migration of 
data from a collection controlled by the old policies to a collection controlled by 
new policies. 

7. Support for deferred and periodic execution of rules to enable automation of the 
validation of assessment criteria.  A rule can be written that checks whether the 



current state information matches the desired values.  If a discrepancy is found, 
such as a corrupted file caused by a disk head crash, the rule can access a valid 
copy and replace the corrupted file.  Such checks need to be performed 
periodically since there are no perfect storage systems.  Data may be lost through 
hardware malfunction, software malfunction, operator error, natural disasters, or 
malicious users.  Assertions about properties of the shared collection are only as 
good as the set of assessment criteria that are used to validate the correctness of 
the system.  Since policies can change over time, assessment criteria must also 
parse audit trails to determine the impact of policy changes.  Given the ability to 
assess the system consistency, it is possible to have the system detect and repair 
problems, minimizing the amount of labor needed for an open repository 
administration. 
 

3.1 Scalability and Performance 
An important aspect of an open repository is its scalability – both in terms of the number 
of digital objects under its control and also in the ingestion rate and access characteristics 
under heavy load.  The iRODS system has been shown to be highly scalable. The iRODS 
system used by the NARA TPAP project [25] has more than 15 million files and will 
have more than 100 million files in the near future (the project is aggregating EOS files 
from NASA Distributed Active Archive Centers) as an archived collection in the testbed. 
Experiments performed with iRODS have shown that it is capable of handling large file 
ingestions (50 files/second from a single stream), and degrades gracefully as the 
collection size increases. This result is reported in [26]. Several optimization techniques 
are also being tested and advocated for better performance of the iRODS system. These 
results give us confidence that an open repository implemented with iRODS can scale to 
100s of millions of files and give good performance for ingestion and access.  
 
4. Example Open Repository based on IRODS 
The Temporal Dynamics of Learning Center (TDLC) [8] is one of six NSF Science of 
Learning Centers (SLC) [27]. TDLC aims to achieve integrated understanding of the role 
of time and timing in learning, across multiple scales, brain systems, and social systems. 
The scientific goal is therefore to understand the temporal dynamics of learning, and to 
apply this understanding to improve educational practice.  Learning occurs at many 
levels: at the level of synapses and neurons; at the level of brain systems involved in 
memory and reward; at the level of complex motor behaviors; at the level of expertise 
learning; and finally, at the level of learning via social interactions between teachers and 
students. TDLC initiatives address such fundamental research questions as: How is 
temporal information about the world learned? How do the intrinsic temporal dynamic 
properties of brain cells and circuits facilitate and/or constrain learning? How can the 
temporal features of learning be used to enhance education? What are the best theoretical 
ways to conceive the temporal dynamics of learning in the brain and between brains? 

Answering these questions cannot emerge from a single line of inquiry, so TDLC's 
research model is collaborative and interdisciplinary from the beginning. The center has 
created communities of scientists that cross disciplinary and institutional barriers in 
pursuit of these common research questions. Researchers in machine learning, 
psychology, cognitive science, neuroscience, molecular genetics, biophysics, 



mathematics, and education focus on these issues from multiple perspectives, 
synchronizing their research in parallel experiments in animals, people, and theoretical 
models. The center includes laboratories from 12 universities in the US, Canada, 
Australia, and UK. A significant challenge for collaborations among such geographically 
distributed scientists is sharing large quantities of data and stimuli quickly and easily, 
while carefully controlling access to only the collaborators permitted to view and 
manipulate the data.  

One initiative of the TDLC is to develop and deploy innovative technologies to support 
this kind of data sharing in the learning sciences, not only for the TDLC but in also 
partnership with the other NSF Science of Learning Centers.  The goal is to enable just-
in-time sharing of neurophysiological data, motion-capture data, fMRI and 
electrophysiology data, and high-quality images and video across many laboratories. This 
requires easy, efficient, fault-tolerant transfer of hundreds of gigabytes, terabytes, and 
one day perhaps petabytes of data on a regular basis. Collaborators also need to be 
assured that shared data are seen only by those with permission dictated by human 
Institutional Research Board (IRB), HIPAA [28], and animal IACUC [29] protocols. And 
after a project or even TDLC ends, data need to be de-identified before sharing outside 
the immediate collaborative group, as dictated by IRB protocols. TDLC’s challenge is 
technology for data sharing that includes speed, fault-tolerance, and sophisticated access 
control but at the same time is easy for scientists to install, maintain, and use on a regular 
basis.  
The generality of the iRODS approach enables the implementation of TDLC specific 
policies.  An example is the enforcement of Institutional Research Board approval flags 
for human subject data. The approval flags are managed in an independent institutional 
database that denotes the locations where human subject data may be distributed and the 
names of individuals that may access the data. iRODS rules are written that periodically 
harvest information from the administrative database, establish explicit access 
permissions for the named individuals, and set distribution approval flags for each file.  
At the policy enforcement point for data retrieval, all accesses are checked, verifying that 
both the distribution approval flag has been set and the access permission has been set for 
the specific individual.  This approach makes it possible to independently control both 
access and distribution of controlled data. 
 
6. Conclusion 
We have discussed the requirements for an open repository framework. We have shown 
that the integrated Rule Oriented Data Systems (iRODS) is an effective candidate for 
implementing such an open repository system. We demonstrated this by first describing 
briefly the iRODS system and then showed how the salient features of that system make 
it a useful open repository system. Finally, we have shown an example open repository 
system under development that is being implemented by the TDLC community for 
sharing their distributed data. We have shown that their need for immediate sharing, 
discovery and processing as well as the need for long-term preservation for promoting 
new research and reuse of data objects are met by their iRODS based repository. Other 
groups that are implementing similar open repositories based on iRODS range from 
institutional repositories (the Carolina Digital Repository), to regional data grids (the 
Renaissance Computing Institute engagement center data grid), to preservation 



environments (the Duke Medical Archives), to data analysis systems (the MotifNetwork).  
An open repository is capable of supporting all types of data management applications. 
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Appendix 1: Policy-Enforcement Points in iRODS 
 The policy-enforcement points in iRODS enable the open repository administrator, data 
provider and system curator to enforce customized operational checks and actions. Each 
open repository can have a different set of rules that are triggered at these points and lead 
to different behaviors for the system.  We list the set of such points that are available in 
iRODS that are appropriate for open repository customization. 
 
Each policy enforcement point has two sets of rules. The first set is applied before the 
action is performed and the second set is applied after the operation is performed.  For 
example, the “On Creation of a Collection” point has two sets of rules, the first rule set is 
applied before the collection is created and the second rule is applied after the successful 
creation of the collection. In an open repository implementation, the administrator might 
have policies to be enforced both before (e.g. check collection-naming convention, check 
the role of the creator of the collection, etc.)  and after (e.g. give access/write permission 
to  groups of users, associate resources that can be used to store objects in the collection, 
put policy on how many replicas need to be created for each object ingested in the 
collection, etc.) the creation of a collection. 
 
Collection-level Policy Points Policy-Enforcement Points:  

1. On Creation of a Collection 
2. On Deletion of a Collection 
3. On Copying a Collection 
4. On Moving a Collection 
5. On Renaming a Collection 
6. On Backing Up a Collection 
7. On Versioning a Collection 
8. On Replicating a Collection 
9. On Listing a Collection 
10. On Querying Metadata from a Collection  
11. On Associating Metadata to a Collection 
12. On Disassociating Metadata from a Collection 
13. On Changing Metadata of a Collection 
14. On Performing a discipline-centric operation on a Collection 

 
Object-level Policy-Enforcement Points  

 
1. On Ingesting an Object into a Collection 
2. On Deleting an Object into a Collection 
3. On Copying an Object from a Collection 
4. On Moving an Object from a Collection 
5. On Renaming an Object in a Collection 
6. On Backing Up an Object in a Collection 
7. On Versioning an Object in a Collection 
8. On Replicating an Object in a Collection 
9. On Querying Metadata of an Object in a Collection  
10. On Associating Metadata to an Object in a Collection 



11. On Disassociating Metadata from an Object in a Collection 
12. On Changing Metadata of an Object in a Collection 
13. On Performing a discipline-centric operation on an Object in a Collection 

 
Appendix 2: Open-Repository-related Micro-services 
Additional system-level micro-services useful for Open Repositories can also be applied 
as rules under the control the iRODS data grid.  These micro-services implement specific 
functions required for discipline-specific applications, or advanced preservation 
functionality. 
 

1. Compute and Register Checksum for an Object or Collection 
2. Validate the Checksum of an Object or Collection 
3. Recover an object on corruption from uncorrupted copies 
4. Create a replica (copy) of an object in another storage resource 
5. Maintain a record of all operations performed upon a file (audit trail) 
 

Domain-specific micro-services useful for Open Repositories: 
1. Extract metadata from an  object using appropriate routines 
2. Associate metadata to an object 
3. Format Conversion routines (e.g. png to jpeg, MS Word to PDF, Open Office to 

PDF, ROM to netCDF, HDF to netCDF, etc) 
4. Semantic Conversion routines (e.g. upload a selected subset of metadata from an 

XML file) 
 
Assessment criteria: 

1. Verify mandatory descriptive metadata attributes are present 
2. Verify all records specified in a submission agreement are present in the 

collection 
3. Verify that all Archival Information Packages conform to a specified template 
4. Verify that all identifiers are unique 
5. Verify all operations performed upon a record comply with current policy 

(requires processing audit trails) 
6. Verify all accesses complied with stated policy 

 


