
A framework for the implementation of Application Profiles in 
XML Schemas

Nicholaos Mourkoussis, Manjula Patel*, Martin White
N.Mourkoussis@sussex.ac.uk, M.Patel@ukoln.ac.uk, M.White@sussex.ac.uk

Centre for VLSI and Computer Graphics, University of Sussex, UK
*UKOLN, University of Bath, UK

Abstract 

The concept of an application profile (AP) has been developed to allow implementers 
to draw on metadata terms from existing vocabularies and customise them for a local 
application.  APs play an important role in enhancing interoperability between diverse 
applications. From our experience of encoding an AP targeted to the digital heritage 
domain, we have devised a generalized XML Schemas Definition (XSD) framework 
capable of satisfying the functional and modelling characteristics of APs with either 
flat  or  nested  structures.   This  paper  presents  the  framework  and  its  technical 
implementation,  its  potential  impact  on  the  development  of  dynamic  machine-
processible APs, and its current limitations.  The framework presented has a layered 
structure  to  explicitly  separate  the  authoritative,  the  non-authoritative,  and  the 
application profile schemas.  We believe this framework to be an important step in 
encoding APs that can be dynamically updated with information relating to the terms 
they reuse, directly from schemas on remote locations (e.g. the web), enabling the 
automatic creation and validation of AP instance records.  

Keywords: 
Application Profiles, XML Schemas, Metadata, Digital Heritage Application Profiles, 
Digital Libraries.

1 Motivation and related work
The notion  of  application  profiles  (APs)  first  emerged  from the  DESIRE project 
(Heery et  al.  2000b).   Since then they have attracted considerable attention in the 
digital  libraries  world,  both  in  terms  of  their  characteristics  as  well  as  their 
implementation in machine readable formats, such as XML Schema Definition (XSD) 
(Fallside 2001; Thompson et al. 2001; Biron and Malhotra 2001) and RDF Schema 
(RDFS) (Brickley and Guha 2004).  In broad terms, APs are a type of element set that 
draws  on  metadata  terms  from  existing  vocabularies  and  customises  them  for  a 
specific application (Heery and Patel 2000).

The collecting together of distinct vocabularies is by no means a new concept.  In 
particular  the  Warwick  Framework  (Dempsey  and  Weibel  1996)  proposed  the 
packaging of  metadata for  its  transfer  between applications.   However,  whilst  the 
Warwick  Framework  works  with  whole  sets  of  metadata,  APs  work  at  a  more 
granular level in order to allow the take-up of individual metadata terms as required. 
More  recently,  the  aggregation  of  multiple  vocabularies  in  order  to  provide  a 
comprehensive set of metadata terms has been revived in the form of the Metadata 

mailto:M.White@sussex.ac.uk
mailto:M.Patel@ukoln.ac.uk
mailto:N.Mourkoussis@sussex.ac.uk


Encoding  and  Transmission  Standard  (METS  2004)  which  includes  descriptive, 
administrative and structural metadata for complex digital resources.  

Within the DESIRE and SCHEMAS (SCHEMAS 2000) projects the concept of APs 
was used as a means of disclosing terms that had been used in particular applications, 
to  facilitate  the  reuse  of  terms  (rather  than  reinvention)  and  thereby  enhance  the 
potential  for  interoperability  between  disparate  systems.   Additionally,  the 
SCHEMAS project made significant early advances with regard to the formulation of 
APs in a machine processible format using RDFS (Baker et al. 2001).  This work 
continued to  mature  in  the  MEG Registry  project  (Heery  et  al.  2002).   Machine 
processible encoding of APs is a necessary requirement for automated data mining 
and querying across vocabularies; it helps in the process of making apparent emerging 
trends and patterns in metadata vocabulary and term usage, in turn aiding the process 
of consensus building.

Existing literature suggests that there are two main contenders for encoding an AP so 
that  it  is  machine  processible:  XSD and RDFS.    The XSD language  provides  a 
structured  expression  that  supports  validation  of  instance  metadata.   Using  XSD, 
implementers are able to define explicit structural, cardinality and datatype constraints 
enabling the automatic validation of metadata records. On the other hand RDF schema 
(Baker et al. 2001) expresses relationships between terms, providing a data model for 
expressing the semantics of terms.  As for APs, there is a need for XML schemas as a 
basis  for  the  automatic  validation  of  metadata  records.  However,  semantic 
interoperability  would  seem also  to  require  the  use  of  RDF schemas  for  a  more 
semantically rich AP.  In this paper we acknowledge that a significant number of 
applications use XML technologies either because semantic web technologies, such as 
RDFS,  have  not  been  mature  enough  or  simply  because  they  do  not  require  the 
functionality that such technologies offer.   We therefore describe a framework for 
implementing an AP using XSD alone. Furthermore, we introduce a dedicated XSD 
encoding called ‘Semantic information’. This encoding defines an extensible set of 
term usage attributes (CEN 2003; CEN 2005a; CEN 2005b). In this way we believe 
that we are partly able to address the requirement of providing support for semantic 
information  using XSD alone.   A detailed explanation of  our  approach is  further 
discussed throughout the rest of the paper.

Hunter et al. (2001) attempted to combine XSD and RDF to satisfy an AP’s encoding 
requirements.  They suggested a web-based metadata architecture, which combines 
the best features of both XSD and RDFS.  They suggested that the XSD encoding, for 
each element, should contain only local usage constraints and no semantic definitions 
such  as  the  semantic  descriptions  inside  the  annotation  and  documentation  tags. 
Additionally,  they suggested that  the  RDF schema representation of  each element 
should only contain semantic definitions.  Therefore, they proposed two alternative 
methodologies to realize the combination of the two schema languages.  In the first 
approach they incorporated the RDFS definitions into the XSD file, using annotation 
tags.  The second approach involves XSD referencing to an external or remote RDFS 
namespace.  However, both methods seem to require either the extension of existing 
parsers, or mechanisms for smoother integration of these two schema languages. More 
importantly, they propose a hybrid solution requiring both XSD and RDFS whereas 
our  solution  makes  use  of  XSD  alone.   Furthermore,  our  framework  could  be 
modified to interact with a hybrid XML/RDF solution. This would probably lead to a 



similar approach to that adopted by Hunter et al. (2001), where they incorporated the 
RDFS definitions into the XSD file, using annotation tags as discussed above.

In the absence of guidelines, implementers of APs are likely to use a wide range of 
presentation  formats  and  proprietary  encodings  to  create  their  APs.   Work of  the 
European Committee for Standardization (CEN) reported that APs, in practice, are 
created for a wide range of purposes, including:

1. Documenting the semantics and constraints used for a set of metadata records. 
2. Helping  communities  of  implementers  harmonize  metadata  practice  among 

themselves.  
3. Identifying  emerging  semantics  as  possible  candidates  for  formal 

standardization.  
4. Serving as guides for semantic crosswalks and format conversions.  
5. Serving as specifications for formal encoding structures. 
6. Interpreting or presenting legacy or proprietary metadata in terms of widely 

understood standards. 
7. Documenting  the  rules  and  criteria  according  to  which  a  set  of  metadata 

records was created.  

The CEN work concludes with a series of reports that provides several guidelines on: 
how information should be structured and presented in Dublin Core APs (CEN 2003); 
how to name and maintain element declarations and APs (CEN 2005b); and finally 
suggests a machine readable representation of DCAP using the convention of RDFS 
(CEN 2005a).

Nagamori  and  Sugimoto  (2004)  proposed  a  metadata  schema  framework  and 
functional  extensions  to  the  DCMI  metadata  schema  registry  to  provide  services 
related to metadata schemas and software tools for metadata schemas. In particular, 
these extensions include a cross-schema search function which associates metadata 
terms across multiple metadata element sets, an element extraction function which 
extracts  common elements  among  multiple  APs,  and  a  software  generator  which 
produces  software  tools  such  as  a  metadata  editor,  a  metadata  search  tool  and  a 
metadata  database  management  tool.   However,  their  approach  is  logically 
implemented with a combination of technologies such as (Relax NG, RDF, RDFS, 
DAML+OIL, OWL etc.).  Additionally, this layered model was primarily introduced 
to separate syntactic and semantic features of metadata schema descriptions in order 
to  clarify  relationships  among constructs  of  metadata  schemas and to  help  cross-
schema mappings for metadata interoperability.  

In contrast to that work, our paper discusses a framework for the encoding of APs 
capable of being dynamically updated with information with respect to the terms they 
use directly from schemas on remote locations. The derived AP schemas could in turn 
be used for the automatic validation of XML instance metadata records in application 
repositories.

In this paper we acknowledge that a significant number of APs may rely for their 
implementation only on XSD.  We therefore took into consideration the existing work 
of peers, mentioned previously, and implemented a generic XSD framework for the 
realization of APs in machine-readable format.  This paper presents that framework 



and discusses its technical implementation and current limitations.  The framework 
presented  has  a  layered  structure  to  explicitly  separate  the  authoritative,  the  non-
authoritative,  and  the  application  specific  parts.   The  remainder  of  this  paper  is 
organized as follows. In Section 2, we outline the characteristics of APs and discuss 
the fundamental concepts upon which this work is based.  In Section 3, we describe 
the generalized XSD framework for the implementation of APs. Section 4 discusses 
the implementation of two APs (i.e. AMS and IPL-ASIA) based upon the proposed 
XSD framework. Finally, section 5 discusses the framework’s potential and current 
limitations.

2 Fundamental concepts
This section describes the fundamental concepts upon which the implementation of 
the XSD framework is based.

2.1 APs and the layered structure
The  AP  model  differentiates  between  element  sets and  application  profiles,  as  a 
means of distinguishing where and how terms are defined as opposed to how they are 
used and adapted in practice (Heery et al. 2002).  Terms are defined in element sets as 
a means of unambiguously identifying them, in particular for re-use.  APs draw on 
terms  defined  in  one  or  more  element  sets  and  adapt  them for  use  in  particular 
applications.  For example, an AP can refine the semantics of a standard term by 
making it  narrower or  more  specific.   APs are  not  allowed to  define  new terms; 
consequently other APs are disallowed from drawing terms from already specified 
APs  in  order  to  avoid  semantic  drift.   Semantic  drift  occurs  when  a  term  is 
successively modified to the extent  that  its  semantics no longer correspond to the 
term’s original definition.    Structuring of metadata vocabularies into element sets 
and APs encourages a layered organisation, making apparent which parts are available 
for re-purposing and which parts have been adapted from elsewhere.  This is a crucial 
function  for  metadata  interoperability  since  implementers  can  extend authoritative 
schemas in accordance to their requirements and at the same time they can enhance 
metadata interoperability.

Summarizing, APs are endowed with the following specific capabilities, they can:

• mix-and-match terms from multiple element sets
• specify dependencies (e.g. mandate encoding schemes)
• adapt existing definitions for local purposes
• declare rules for content  (e.g. usage guidelines)
• specify whether an element is mandatory, optional or repeatable

2.2 Uniform Resource Identifier 
The Uniform Resource Identifier (URI) (Berners-Lee et al. 1998) provides for unique 
identification of resources on the Web, it can be used to identify resources such as 
images, places, music, documents and people.  More importantly here, it is used to 
uniquely identify the individual  concepts,  terms and relationships that  constitute a 
vocabulary, so that it is possible to distinguish between entities with the same name 
label. The use of URIs for resource identification thus provides for a compelling and 
powerful decentralised architecture in which metadata vocabularies can be developed 
without the need for centralised coordination, but can nonetheless be referenced when 
necessary.



2.3   XML Namespace Mechanism
XML Namespaces were introduced into XML Schemas (Bray et al. 1999) as a way of 
unambiguously identifying the elements and attributes in an XML document.  The 
XML Namespace mechanism allows elements and attributes in an XML document to 
be referenced in other XML documents.  The XML Namespace mechanism together 
with  the  use  of  URIs  allows  metadata  terms  from  multiple  vocabularies  to  be 
referenced  and  thereby  collected  together  to  form  an  AP.   Furthermore,  DCMI 
namespace policy (Powell et al. 2001) dictates that changes of semantics in a term 
(such as changes in definition) are not directly applicable on the same namespace. 
Therefore, new semantics require a change of either the name or namespace for the 
term or terms in question. In order to satisfy the latter requirement in the proposed 
XSD  framework  (refer  to  section  3)  we  draw  the  term’s  datatype  from  the 
authoritative schemas into a non-authoritative XML schema and adapt its semantics at 
the non-authoritative layer under the new schema namespace.

Furthermore, whilst we have focused on the technicalities of implementing APs in 
XSD, it should be remembered that the mixing and matching together of individual 
terms from existing vocabularies may cause problems due to their being pulled out of 
a larger context.  We believe this to be a modelling issue, which needs to be addressed 
during the design of the application’s information model.

2.4 Principle of appropriate identification and metadata documentation
According to the principle of appropriate identification (CEN 2003), metadata terms 
should be identified and documented as precisely as possible. The preferred method 
for  a  term’s identification is  to cite its  assigned URI.   In  practise  though,  not  all 
authoritative metadata terms have a URI assigned.  This makes the use of further 
descriptive attributes important, collectively known as term usage (CEN 2003).  Term 
usage attributes include both required (i.e. Term URI, Defined By, Name, Label) and 
optional definitional attributes (i.e. Definition, Comments, Type of term), relational 
attributes (i.e. Refines, Refined By, Encoding Scheme For, Has Encoding Scheme, 
Similar To), and constraints (i.e. Obligation, Condition, Datatype, Occurrence).

Correct use of term usage attributes has the potential to support both users and tools in 
understanding and correctly using an XSD encoded AP.  For instance, it is widely 
considered easier for people to understand descriptive rather than XSD encodings. 
Furthermore, implementers of AP and metadata schemas software editors may use 
this  supplementary term usage information to automatically generate tool  tips and 
other helper functions for their users.  Figure 1 presents an example of a metadata 
editor that makes use of term usage attributes encoded inline with each term XSD 
encoding, to generate tool tips and other helpful information for users.  This particular 
example refers to the ARCO (White et al. 2003) Metadata Schema AP, collectively 
known as AMS (Mourkoussis et al. 2003; Patel et al. 2005).  The scope as well as the 
encoding of the AMS AP, according to the proposed framework will be discussed in 
Section 4 of this paper.



Figure 1: An example of tool tips generated dynamically from term usage attributes encoded 
with the AP (Patel et. al, 2005)

2.5 Descriptive header
A Descriptive  Header  (CEN 2003)  places  the  AP into  an  interpretive  context  by 
specifying, at a minimum, a Title, Creator, Date, Identifier, and Description for the 
AP. 

3 The Proposed XSD Framework
This section discusses the proposed XSD framework for encoding APs that can be 
dynamically updated with information on the terms they use directly from schemas at 
remote locations such as the web. First, we discuss the terminology used, then the 
building blocks (i.e. layers) of the framework, and finally guidelines for making the 
technical implementation of this framework possible.

3.1 Terminology
Table 1 presents and provides definitions for the terms used in the proposed XSD 
framework.



Table 1: Explanation of terms

Term Description
Authoritative 
schemas:

Schema encodings, which are made available by an authoritative 
body such as DCMI (DCMI XML schemas 2004) or CIMI (CIMI 
XML Schema 2002).

Non-
authoritative 
schemas:

An implementer provides these encodings locally when an XSD 
version of an authoritative element set is not available from the 
associated authoritative body.  This term also caters for an 
application specific element set, which serves to introduce new 
terms, which cannot be satisfied by an existing standard.

AP schemas: These encodings draw terms from authoritative and non-
authoritative schema encodings.

Schemas 
container

In general an XSD encoding of a schema container makes possible 
the use of terms from schemas with different target namespaces. 
It also makes possible filtering out of the original namespaces of 
adopted terms.  In this framework we make use of two schema 
containers: ‘non-authoritative schema container’ and ‘application 
schema container’

Non-
authoritative 
schemas 
container

The container schema that allows schemas in the ‘non-
authoritative’ level to access data types or terms from the 
‘Authoritative’ level schemas for customizing them according to 
the requirements of the AP.

Application 
schemas 
container

The container schema that allows the ‘APs’ schemas to reference 
terms of both the ‘authoritative’ and ‘non-authoritative’ schemas.

Term URI A Uniform Resource Identifier used to identify the term (CEN 
2003).

Name A unique token assigned to the term (CEN 2003).
Label A human-readable label assigned to the term (CEN 2003).
Defined By An identifier of a namespace, pointer to a schema, or 

bibliographic reference for a document within which the term is 
defined (CEN 2003).

Definition A statement that represents the concept and essential nature of the 
term (CEN 2003).

Comments Additional information about the term or its application (CEN 
2003).

Type of term A grammatical category of the term (e.g. "Element", "Element 
Refinement", or "Encoding Scheme") (CEN 2003).

Refines The described term semantically refines the referenced term (CEN 
2003).

Refined By The described term is semantically refined by the referenced term 
(CEN 2003)

Encoding 
Scheme For

The described term, an Encoding Scheme, qualifies the referenced 
term (CEN 2003).

Has Encoding 
Scheme

The described term is qualified by the referenced Encoding 
Scheme (CEN 2003).

Similar To The described term has a meaning the same as, or similar to, that 
of the referenced term (CEN 2003).

Obligation Indicates whether the element is required to always or sometimes 



be present (i.e., contain a value). Examples include "Mandatory", 
"Conditional", and "Optional" (CEN 2003).

Condition Describes the condition or conditions according to which a value 
shall be present (CEN 2003).

Datatype Indicates the type of data that can be represented in the value of 
the element (CEN 2003).

Occurrence Indicates any limit to the repeatability of the element (CEN 2003).

3.2 The layered XSD framework
The XSD framework of our approach consists of five layers (see Figure 2) of XML 
schema encodings:

1. Authoritative schemas  layer includes the XSD encodings, provided by the 
associated authoritative body, from which the AP will adopt terms.

2. Non-authoritative schemas container layer consists of one XSD encoding 
with no target  namespace assigned to  it.   This  encoding makes use of  the 
import  mechanism  and  provides  access  to  terms  and  datatypes  of  XSD 
encodings of the ‘authoritative’, which might be later, used by the encodings 
of the ‘non-authoritative’ schemas layer.

3. Non-authoritative schemas layer  includes  the  XSD  encodings  of  non-
authoritative XSD implementations of element sets in the event of such not 
being provided by the corresponding authority; application specific element 
sets;  and  finally  XSD  encodings  of  derived  datatypes  from  the  original 
datatypes  of  ‘authoritative’  schemas  in  order  to  create  new  terms  with 
specified dependencies.  At this level implementers may also adapt existing 
definitions for local purposes as well as define rules for content and other term 
usage attributes.  This level also includes the XSD that defines the term usage 
attributes. 

4. Application schemas container layer consists of one XSD encoding with no 
target namespace assigned to it.  This encoding makes use of the <import> 
mechanism and provides access to terms existing in the ‘authoritative’ and 
‘non-authoritative’ schemas, which will be later used by the AP schemas.

5. Application profile schemas layer consists of a number of XSD encodings 
that satisfy the data model of each AP.  These encodings adopt terms from the 
XSD encodings of the ‘authoritative’ and ‘non-authoritative’ schemas layers 
through  the  use  of  the  ‘APs  container’  XSD  encoding.   At  this  level 
implementers may customise the cardinality constraints of the terms. 



Figure 2: Generic XSD framework for the implementation of APs

3.3 General guidelines
A set  of  general  guidelines  are  proposed  that  may be  used  for  implementing  the 
proposed XSD Framework:

1. This framework is based only on XSD encodings. 
2. The framework allows implementers to use any number of XSD encodings in 

order to satisfy requirements of an AP both in terms of metadata terms and 
data models.

3. Implementers are advised to use the available encodings from authoritative 
initiatives, if these are provided.

4. Implementers  are  advised  to  follow  any  implementation  guidelines  and 
recommendations, if available, when they encode ‘non-authoritative’ versions 
of standards.

5. Implementers must not create  new terms in the APs layer.  If  the metadata 
requirements  of  an  AP  cannot  be  satisfied  by  terms  existing  in  the 



‘authoritative’  schemas,  then  the  new terms  must  be  defined  at  the  ‘non-
authoritative’ schemas layer of the framework.

6. Implementers must make use of the concept of target XML namespaces to 
distinguish between ‘authoritative’, ‘non-authoritative’ and ‘AP’ schemas.

3.4 Modelling and implementation guidelines
A set  of  modelling  and implementation  guidelines  are  proposed  to  provide  more 
implementation detail:

1. Implementers who need to be able to mix and match terms should make use of 
the two ‘container  schemas’.   The ‘container  schemas’  should be encoded 
without a target namespace to enable the use of distinct namespaces between 
‘authoritative’,  ‘non-authoritative’,  and  ‘AP’  encodings.   Finally  ‘schemas 
containers’ must always make use of the <import> XSD mechanism, whereas 
encodings  that  wish  to  access  components  (i.e.  terms  or  datatypes)  made 
available by the container, should make use of the <include> mechanism. In 
that  way AP developers will  be able  to draw elements and datatypes from 
authoritative  namespaces,  customize  them  if  that  is  required  in  the  non-
authoritative namespace and adopt  them in AP layer,  without affecting the 
terms in the original namespace. 

2. Implementers  might  wish  to  adopt  a  term  without  modifying  either  its 
semantic, structural or dependencies properties. In that case terms should be 
drawn directly from the ‘authoritative’ schemas layer.

3. Implementers are either allowed to tailor an adopted term in the ‘AP’ schemas 
layer, and/or tailor an adopted datatype (cf.  Figure 5,  Figure 10, related text 
and provided source code) so as to create a derived datatype and then create a 
new term in the ‘non-authoritative’ schemas layer.

4. Implementers might wish to encode semantically ‘rich’ or application-specific 
information relating to terms adopted in their AP.  Term usage attributes and 
their definitions are available at the ‘non-authoritative schemas’ layer, through 
a set  of terms titled ‘semantic information’ as illustrated in  Figure 2.  The 
encoding of each term’s attributes should occur under the <appInfo> XSD 
element of the each adapted term (cf.  Figure 6,  Figure 11, related text and 
provided source code).  The list of term attributes currently includes all the 
suggested  term  usage  information  as  reported  in  CEN  (2003)  and  CEN 
(2005a).  However, the system caters for extensibility so if implementers wish 
to  update  the  list  of  term  usage  attributes,  in  order  to  satisfy  a  specific 
requirement  of  their  particular  application,  they  simply  have  to  edit  that 
particular schema.

5. Implementers might wish to change the cardinality constraints of an adopted 
term.  In that case they should first adopt the desired term and then alter its 
cardinality constraints by modifying its min-max occurrences.

6. If implementers wish to specify dependencies in an adopted term, they should 
first adopt the datatype of the original term from the ‘authoritative’ schemas at 
the ‘non-authoritative’  schema layer and then tailor  it.   This can occur by 
either the use of several XSD mechanisms (i.e. <list>, <union>, <extension>, 
<restriction> and <redefine>), or in the case that ‘authoritative’ schemas are 
encoded in such a way that they do not allow their  terms’ datatypes to be 
tailored,  implementers  are  advised  to  define  a  specific  <attribute>  for  the 



element, named value,  in order to carry the term’s value encoded with the 
appropriate dependencies.

7. If implementers wish to adapt existing terms and specify dependencies such as 
element  refinements,  or  create  nested  APs,  they  should  follow  a  similar 
approach to proposal 6 (above).  That is, they should first adopt the datatype of 
the original term from the ‘authoritative’ schemas at the ‘non-authoritative’ 
schema layer and then tailor it.  This can occur by the use <extension> XSD 
mechanism and then create the desired element refinements.  Furthermore, if 
implementers wish to create element refinements by adopting existing terms 
from other non-authoritative schemas encodings, they are advised to use the 
<import> XSD mechanism and import the desired XSD. In this way they will 
be able to draw on global elements from the same framework layer and use 
them as element refinements.

4 Experimental studies validating the framework
To  evaluate  the  proposed  XSD  framework  and  identify  its  potential  and 
limitations, two APs were selected to be encoded; the ARCO Metadata Schema—
AMS (Mourkoussis et al. 2003; Patel et al. 2005), and the Internet Public Library 
Asia— IPL-Asia (Lee at al. 2003).  The AP requirements were chosen as criteria 
to  validate  in  part  the  proposed  framework.  These  criteria  were  first  listed  at 
section 2.1, however they are repeated below for convenience:

• mix-and-match terms from multiple element sets
• adapt existing definitions for local purposes
• declare rules for content  (e.g. usage guidelines)
• specify whether an element is mandatory, optional or repeatable
• specify dependencies (e.g. mandate encoding schemes)

In addition to the above, two more criteria were selected.  First, the framework should 
be able to create both flat and structured APs.  Second, it should allow for terms to be 
unbundled  and  adopted  from  both  flat  and  structured  metadata  schemas.  The 
following two sub-sections  discuss  the encoding of  the  two APs (i.e.  AMS, IPL-
ASIA) using the proposed XSD framework.  Successful implementation of those two 
APs  with  the  proposed  framework  would  meet  all  the  above criteria.   Schematic 
illustrations  and  code  extracts  from  existing  implementations  are  provided  to 
demonstrate the completeness of each implemented AP.  Lessons learned and other 
concluding remarks will be further discussed in section 5.

4.1 Experimental Study 1: AMS AP
AMS is an AP designed and implemented to satisfy the metadata requirements of a 
European Union funded project titled Augmented Representation of Cultural Objects 
(ARCO).  The ARCO system is modular providing museums with a set of tools to 
enable their staff to create, manage, and present virtual exhibitions (White et al. 2003; 
Patel et al. 2005).  AMS is an integral part of the architecture of the system.  It is an 
AP,  which  underpins  both  the  heritage  and  technical  aspects  of  the  project.   It 
provides  terms  that  describe  cultural  artefacts,  their  digital  surrogates,  as  well  as 
technical  data  relating to  virtual  exhibitions (Mourkoussis  et  al.  2003;  Patel  et  al. 
2005). In the interests of interoperability and to avoid reinventing metadata elements, 
the terms in the AMS comprise those from standards (i.e. DCMES and SPECTRUM 
(Grant 1997)), but are also supplemented with ARCO specific metadata terms.  A full 



AMS specification and metadata  requirements analysis  is  out  of  the scope of  this 
paper; however it can be found on the ARCO project website (ARCO Consortium 
2004).  

Figure 3 illustrates the encoding of AMS using the proposed XSD framework (ARCO 
Consortium  2006).   In  brief,  as  described  above,  there  are  five  layers  of  XSD 
encodings: 

1. Authoritative  schemas layer  includes  the  XSD  encodings,  provided  by 
Dublin Core (DCMI XML schemas 2004 (later versions now available)) and 
SPECTRUM.  

2. Non-authoritative schemas container layer consists of one XSD encoding 
with no target  namespace assigned to  it.   This  encoding makes use of  the 
<import>  mechanism and provides  access  to  terms  and  datatypes  of  XSD 
encodings of the ‘authoritative’ that might be later used by the encodings of 
the ‘non-authoritative’ layer. 

3. Non-authoritative  schemas layer  includes  the  XSD  encodings  of  non-
authoritative XSD implementations of element sets in the event of such not 
being provided by the corresponding authority; application specific element 
sets (e.g.  ‘ARCO specific terms’); and finally XSD encodings of terms with 
specified dependencies derived from the original datatypes of ‘authoritative’ 
schemas (e.g. ‘DC Cultural Object’). The ‘semantic information’ XSD defines 
the term usage attributes. At this layer existing definitions are adapted for local 
purposes  as  well  as  rules  for  content  and  other  term  usage  attributes  are 
defined.  To satisfy this requirements the non-authoritative schemas <import> 
the ‘semantic information’ XSD and encode term usage attributes as suggested 
in proposal 4 in section 3.4.

4. Application schemas container layer consists of one XSD encoding with no 
target namespace assigned to it.  This encoding makes use of the <import> 
mechanism and provides access to terms existing in the ‘authoritative’ and 
‘non-authoritative’ schemas that will be later used by the ‘AP’ schemas. 

5. AP schemas layer consists of a number of XSD encodings that satisfy the data 
model of the AMS AP (e.g. ‘Cultural Object’). These encodings adopt terms 
from  the  XSD  encodings  of  the  ‘authoritative’  and  ‘non-authoritative’ 
schemas layers through the use of the ‘APs container’ XSD encoding.  At this 
level the cardinality constraint the adopted terms are customized to satisfy the 
application’s requirement.

In more detail, the mix-and-match of terms from multiple element sets requirement 
became  possible  since  terms  from  different  ‘authoritative  and  non-authoritative’ 
schemas  can  be  adopted  from  both  authoritative  and  non-authoritative  schemas 
through the containers XSD (i.e.  Non-authoritative schemas container, Application 
schemas  container).   To  achieve  this,  the  ‘schemas  container’  makes  use  of  the 
<import> (Fallside 2001) mechanism provided in the XSD language.



Figure 3: Schematic diagram demonstrating AMS encoding with the proposed XSD framework

In turn the ‘AP’ schemas use the <include> (Fallside 2001) mechanism of the XSD 
language in order to enable access to the ‘schema container’ components.  This idea 
draws on  guideline  notes  on  the  W3C XML Schemas  for  Qualified  Dublin  Core 
(DCMI  XML  schemas  2004  (later  versions  now  available)).   The  <import> 
mechanism permits terms from different ‘authoritative and non-authoritative’ schemas 
(i.e. different target namespaces) to be used together in the ‘schema container’, and 



hence it  enables the schema validation of instance content defined across multiple 
namespaces.  The effect of the <include> mechanism is to provide access to the terms 
of the XML schema container, and make them available as part of the ‘AP’ schemas. 
However, the <include> mechanism requires that the target namespace of the included 
terms must be the same as the target namespace of the including schema (i.e. ‘APs’ 
schema).  For this reason we defined the ‘schema container’ with no target namespace 
and the effect  was that the components included in the AP schemas inherited the 
target namespace of the AP schemas.  

Figure 4 provides a source code extract demonstrating that encoding AMS with the 
proposed framework we were able to satisfy the ‘mix-and-match terms from multiple 
element sets’ AP requirement.  The provided extract depicts the ‘cultural object’ AMS 
XSD  encoding,  in  which  terms  are  adopted  by  the  adapted  Dublin  Core  and 
SPECTRUM standards, as well as from the ARCO Specific terms schema.

<xs:schema targetNamespace="http://arco-web.org/schemas/cultural/" xmlns:termsclt= 
. . .
. . .

<xs:include schemaLocation="containerapplication.xsd"/>
<xs:element name="cultural">

<xs:complexType>
<xs:sequence>

. . .

. . .
<xs:element ref="dcclt:contributor" minOccurs="0" 

maxOccurs="unbounded"/>
<xs:element ref="termsclt:type"/>
<xs:element ref="termsclt:description"/>
<xs:element ref="dcclt:rights"/>
<xs:element ref="cimi:objectProductionDate" 

minOccurs="0"/>
<xs:element ref="cimi:objectProductionPlace" 

minOccurs="0" maxOccurs="unbounded"/>
<xs:element ref="cimi:completeness" minOccurs="0"/>
<xs:element ref="cimi:condition" minOccurs="0"/>

. . .

. . .
<xs:element ref="arco:component" minOccurs="0"/>
<xs:element ref="cimi:acquisitionSource" 

minOccurs="0"/>
<xs:element ref="cimi:accessionDate"/>
<xs:element ref="cimi:currentLocation"/>
<xs:element ref="cimi:fieldCollection"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 4: Source code extract validating the realization •of the ‘mix-and-match terms from 
multiple element sets’ AP requirement

The second requirement concerns specifying dependencies for an adopted term.  The 
XSD language does not allow direct customization of adopted (i.e. imported) terms 
without affecting the original term.  However,  it  is  possible to tailor the datatype 
(Biron 2001) of the term under question since XSD provides several mechanisms (i.e. 
<list>, <union>, <extension>, <restriction>, <redefine>) (Fallside 2001) to derive a 
new datatype based on the existing datatype of the term and then create a new term 
based on the derived type. To satisfy this requirement we had to draw the original 
datatype  from the  authoritative  layer  to  the  non-authoritative  layer,  derive  a  new 
datatype based on it, and then create a new term based on the derived datatype.  The 
idea of this approach is based on Hunter’s work (Hunter 2001).



Figure 5 illustrates how the date SPECTRUM term has been adapted to satisfy AMS 
requirements.   Provided  by  the  authoritative  encoding  of  SPECTRUM (i.e.  CIMI 
XML  Schema  v  1.5)  cs:date  is  a  nested  complex  datatype.  For  the  AMS  AP 
requirements  we  needed only  a  part  of  this  complex  data  type.  In  particular,  we 
wanted only the text term.  We created a new datatype called productionDate that was 
derived  by  applying  restrictions  to  the  authoritative  ‘cs:date’.   In  particular,  we 
modified the cardinality constraints of the not-wanted terms to be of both minimum 
and  maximum  occurrence  equal  to  zero.   Then  we  created  a  term  called 
ObjectProductionDate based on the latter derived datatype.  

<xs:complexType name="productionDate">
<xs:complexContent>

<xs:restriction base="cs:date">
<xs:sequence>

<xs:element name="association" type="xs:string" 
minOccurs="0" maxOccurs="0">

<xs:annotation>
. . .
. . .

</xs:annotation>
</xs:element>
<xs:element name="earliest" minOccurs="0" 

maxOccurs="0">
<xs:complexType>

<xs:sequence>
<xs:element 

name="certainty" type="xs:string" minOccurs="0">
<xs:annotation>

. . .

. . .

</xs:annotation>
</xs:element>

. . .

. . .

. . .
<xs:element name="text" type="xs:string">

<xs:annotation>
. . .
. . .

</xs:annotation>
</xs:element>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>
<xs:element name="objectProductionDate" type="cimi:productionDate">

<xs:annotation>
. . .
. . .

</xs:annotation>
</xs:element>

Figure 5: Source code extract validating the realization of the ‘specifying dependencies’ AP 
requirement

The third (i.e. adapt existing definitions for local purposes) and fourth (i.e. declare 
rules  for  content)  AP  requirements  were  achieved  by  the  use  of  the  <appInfo> 
(Fallside 2001) mechanism of the XSD language.  As defined in the XML Schema 
W3C recommendation, the <appInfo> component is used to provide information for 
tools, stylesheets and other applications.  In our case we used <appInfo> in order to 
provide ‘rich’ information, such as definitions and declare rules for content, for each 
adopted term.  For this purpose we updated our own convention (Mourkoussis et al. 
2003)  for  the  encoding  of  semantically  ‘rich’  and  additional  application  specific 
information  with  the  guidelines  for  term  usage  provided  by  the  CEN  workshop 



Agreements  reports  (CEN  2003,  CEN  2005a).  This  includes  identification, 
definitional, relational and constraints attributes.  Figure 6 provides an example of 
such an encoding.  The definitions of the term usage terms are encoded in a separate 
XSD, named  ‘Semantic Information’ (refer to  Figure 3).  This allows the list to be 
extensible so as to be able to satisfy application specific requirements of tools that 
will  process the elements for example as a tool-tip or mappings between profiles. 
Figure 6 provides a source code extract to demonstrate the use of <appInfo> and term 
usage attributes in order to adapt existing definitions for local purposes, declare rules 
for content, and provide other semantic information.

<xs:element name="source" type="dc:SimpleLiteral">
<xs:annotation>

<xs:appinfo>
<app:termURI>http://purl.org/dc/elements/1.1/source</app:termURI>

<app:name>source</app:name>
<app:label>Source</app:label>
<app:definedBy>DCMI</app:definedBy>
<app:definition>A unique identifier for the physical 

artefact for which the CO is a surrogate</app:definition>
<app:comments>The identifier will be unique for the 

museum, e.g. LEWSA (institution).1973 (year when object was acquired for the 
museum).3 (a unique number for the donor). 5 (individual numbers for the objects 
within the donor's bequest) e.g. LEWSA:1964.1.158</app:comments>

<app:typeOfTerm>Element Refinement</app:typeOfTerm>
<app:refines>culturalObject</app:refines>
<app:obligation>Mandatory</app:obligation>
<app:datatype>String</app:datatype>
<app:occurrence>1</app:occurrence>

</xs:appinfo>
</xs:annotation>

</xs:element>

Figure 6: Source code extract validating the realization of the ‘adapt existing definitions for local 
purposes’ and ‘declare rules for content’ AP requirements

The fifth and final (i.e.  alter the cardinality constraints) requirement was achieved 
with  the  use  of  <minOccurs>  (Fallside  2001)  and  <maxoccurs>  (Fallside  2001) 
cardinality constraints provided by the XSD language.  Figure 7 illustrates in part the 
AMS ‘acquired object’ XSD.  In this particular example cardinality constraints are 
applied to the adopted terms. 

<xs:schema targetNamespace="http://arco-web.org/schemas/acquired/" 
. . .
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation="containerapplication.xsd"/>
<xs:element name="acquired">

<xs:complexType>
<xs:sequence>

. . .
<xs:element ref="dcacq:title"/>
<xs:element ref="dcacq:publisher" minOccurs="0"/>
<xs:element ref="dcacq:creator"/>
<xs:element ref="dcacq:contributor" minOccurs="0" 

maxOccurs="unbounded"/>
. . .

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 7: Source code extract validating the realization of the ‘alter the cardinality constraints’ 
AP requirement



4.2 Experimental Study 2: IPL – ASIA AP
IPL-ASIA is an AP designed and implemented to satisfy the metadata requirements of 
a  multilingual  subject  gateway,  which  is  partly  a  collaborative  project  with  the 
Internet Public Library (Lee et al. 2003).  The AP is focused on resource collections 
published  in  Chinese,  Japanese  and  Korean  (CJK)  languages.   The  underlying 
principle is that the AP will be able to document each information resource in four 
languages  (CJK  plus  English).   In  the  interests  of  interoperability  and  to  avoid 
reinventing  metadata  elements,  the  terms  in  the  IPL-ASIA  comprise  those  from 
standards  (i.e.  DCMES  and  IEEE  LOM  (IEEE  LTSC  2002)),  but  are  also 
supplemented with IPL-ASIA specific metadata terms.

Figure 8 illustrates the encoding of IPL-ASIA using the proposed XSD framework. 
As described above there are five layers of XSD encodings: 

1. Authoritative  schemas layer  includes  the  XSD  encodings,  provided  by 
Dublin Core (DCMI XML schemas 2004 (later versions now available)).  

2. Non-authoritative schemas container layer consists of one XSD encoding 
with no target  namespace assigned to  it.   This  encoding makes use of  the 
<import>  mechanism and provides  access  to  terms  and  datatypes  of  XSD 
encodings of the ‘authoritative’, which might be later, used by the encodings 
of the ‘non-authoritative’ layer.  

3. Non-authoritative  schemas layer  includes  the  XSD  encodings  of  non-
authoritative  XSD  implementations  of  element  sets  (i.e.  ‘IEEE  LOM’); 
application specific element sets  (i.e.  ‘IA specific terms’);  and finally XSD 
encodings  of  terms  with  specified  dependencies  derived  from the  original 
datatypes of ‘authoritative’ schemas (i.e.  ‘DC IPL’,  ‘DCTERMS IPL’).  The 
‘semantic information’ XSD defines the term usage attributes. At this layer 
existing definitions are adapted for local purposes as well as rules for content 
and other term usage attributes are defined.  To satisfy this requirement the 
non-authoritative  schemas  <import>  the  ‘semantic  information’  XSD  and 
encode  term  usage  attributes  as  suggested  in  proposal  4  in  section  3.4. 
Furthermore,  at  this  current  ‘IA  Specific  terms’  are  structured  as  element 
refinements of adapted DCMI terms.  In order for the latter to be achieved, the 
‘DCIPL’ and ‘DCTERRMS IPL’  schemas <import> the  ‘IA Specific terms’ 
schema definitions and the desired element refinements are implemented.  

4. APs container layer consists of one XSD encoding with no target namespace 
assigned to  it.   This encoding makes  use  of  the <import> mechanism and 
provides access to terms existing in the ‘authoritative’ and ‘non-authoritative’ 
schemas, which will be later used by the ‘AP’ schemas. 

5. AP schemas layer consists of IPL-ASIA AP XSD encoding.   At this level 
cardinality  constraints  of  adopted  terms  are  customized  to  satisfy  the 
application’s requirement.



Figure 8: Schematic diagram demonstrating IPL-ASIA encoding with the proposed XSD 
framework

In more detail, the mix-and-match of terms from multiple element sets requirement 
became  possible  since  terms  from  different  ‘authoritative  and  non-authoritative’ 
schemas can be adopted through the containers XSDs (i.e. Non-authoritative schemas 
container, Application schemas container).  The mechanism used here is the same as 
the one used in the AMS AP (in order to avoid text duplication please refer to section 
4.1 for further information).  Figure 9 provides a source code extract demonstrating 
that encoding IPL-ASIA with the proposed framework we were able to satisfy the 
‘mix-and-match terms from adapted Dublin Core (i.e.‘DCIPL’ and ‘DCTERMS IPL’) 
‘IEEELOM’ and ‘IA Specific terms’ XSDs.

<xs:schema targetNamespace="http://IPL-ASIA-DUMMY.org" 
. . . 
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation="containerapplication.xsd"/>
<xs:element name="IPL-ASIA">

<xs:complexType>
<xs:sequence>

<xs:element ref="dcipl:Title"/>



<xs:element ref="dcipl:Creator" minOccurs="0"/>
. . .
. . .

<xs:element ref="dcipl:Date"/>
<xs:element ref="lom:Metametadata"/>
<xs:element ref="dcTermsipl:Audience"/>
<xs:element ref="dcipl:Subject"/>

. . .
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Figure 9: Source code extract validating the realization of the ‘mix-and-match terms from 
multiple element sets’ AP requirement

The  second  requirement  concerns  specifying  dependencies  for  an  adopted  term. 
Similar to section 4.1 in order to satisfy this requirement we had to draw the original 
datatype  from the  authoritative  layer  to  the  non-authoritative  layer,  derive  a  new 
datatype based on it, and then create a new term based on the derived datatype. The 
code extract in  Figure 10 illustrates how we specified dependencies on the Dublin 
Core adapted term ‘title’. We created a new term called ‘Title’ by adapting the Dublin 
core  ‘SimpleLiteral’ datatype.  We allowed for the dataype to be extended and we 
created two children elements (i.e.  adopting the  ‘Main-Title’ and  ‘Sub-Title’ terms 
form the  ‘IA Specific  terms’ XSD).   In  this  way we managed to  declare  element 
refinements to the adopted ‘title’ term and create nested APs.  In order to allow the 
‘DCIPL’ term title to have as element refinements those two ‘IA Specific terms’, we 
had to use <import>, as illustrated in the source code below. 

<xs:schema targetNamespace="http://www.ipl-asia " 
. . . 
elementFormDefault="qualified" attributeFormDefault="unqualified">

. . .
<xs:include schemaLocation="containernonauthorative.xsd"/>
<xs:import namespace="http://www.ipl-asia-dummy.org/schemas/ia" 

schemaLocation="IA.xsd"/>
<xs:import namespace="http://www.arco-

web.org/schemas/version14/arco/application/" 
schemaLocation="SemanticInformation.xsd"/>

<xs:element name="Title">
<xs:annotation>

. . .
</xs:annotation>
<xs:complexType>

<xs:complexContent>
<xs:extension base="dc:SimpleLiteral">

<xs:sequence>
<xs:element ref="ia:Main-Title"/>
<xs:element ref="ia:Sub-Title" 

minOccurs="0"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
</xs:element>
. . .
. . .

</xs:schema>

Figure 10: Source code extract validating the realization of the ‘specifying dependencies’ AP 
requirement

The third (i.e. adapt existing definitions for local purposes) and fourth (i.e. declare 
rules for content) AP requirements were achieved, similarly to section 4.1, by the use 
of  the  <appInfo>  (Fallside  2001)  mechanism  of  the  XSD  language.  Figure  11 
provides a source code extract to demonstrate the use of <appInfo> and term usage 



attributes in order to adapt existing definitions for local purposes, declare rules for 
content, and provide other semantic information for the ‘description’ term.

. . .
<xs:element name="Description">

<xs:annotation>
<xs:appinfo>

<app:termURI>http://purl.org/dc/elements/1.1/description</app:termURI>
<app:name>Description</app:name>
<app:label>Description</app:label>
<app:definedBy>DCMI</app:definedBy>
<app:definition>An account of the content of the 

resource.</app:definition>
<app:typeOfTerm>Element Refinemnt</app:typeOfTerm>
<app:refines>IPL-ASIA</app:refines>
<app:refinedBy>ia:Long</app:refinedBy>
<app:refinedBy>ia:Short</app:refinedBy>
<app:obligation>Mandatory</app:obligation>
<app:datatype>String</app:datatype>
<app:occurrence>1</app:occurrence>

</xs:appinfo>
</xs:annotation>
<xs:complexType>

. . .

. . .
</xs:complexType>

</xs:element>
. . .

Figure 11: Source code extract validating the realization of the ‘adapt existing definitions for 
local purposes’ and ‘declare rules for content’ AP requirements

The fifth and final (i.e.  alter the cardinality constraints) requirement was achieved 
with  the  use  of  <minOccurs>  (Fallside  2001)  and  <maxoccurs>  (Fallside  2001) 
cardinality constraints provided by the XSD language.  Figure 12 illustrates in part the 
‘IPL-ASIA’ XSD.  In this particular example cardinality constraints are applied to the 
adopted terms.

<xs:schema targetNamespace="http://IPL-ASIA-DUMMY.org" 
. . .
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:include schemaLocation="containerapplication.xsd"/>
<xs:element name="IPL-ASIA">

<xs:complexType>
<xs:sequence>

. . .

. . .
<xs:element ref="dcipl:Subject"/>
<xs:element ref="dcipl:Coverage" minOccurs="0"/>
<xs:element ref="dcipl:Relation" minOccurs="0"/>
<xs:element ref="dcipl:Source" minOccurs="0"/>
<xs:element ref="dcipl:Rights" minOccurs="0"/>
<xs:element ref="dcipl:Contributor" minOccurs="0"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Figure 12: Source code extract validating the realization of the ‘alter the cardinality constraints’ 
AP requirement

5 Conclusion
The framework for the implementation of APs in XSD that we propose in this paper is 
the outcome of a case study based on our attempt to encode the ARCO metadata 
element  set  (AMS)  as  an  AP.   We  believe  this  work  has  led  to  the  successful 
identification of a series of XSD mechanisms that implementers can employ to satisfy 



the  modelling  and  implementation  requirements  of  APs.  The  applicability  of  the 
framework was further evaluated by employing it in the implementation of the IPL-
ASIA AP.  These two case studies, validated the proposed framework as capable of 
encoding  both  flat  and  nested  APs,  satisfying  a  series  of  criteria  as  described  in 
section 4.

During this work, we came across a series of issues worthy of discussion.  First, we 
noticed that  there  is  no mechanism in  the  XML Schemas language  to  override  a 
previously defined term.  For example, assume that there is a term named ‘A’ in a 
metadata  standard  that  satisfies  the  semantic  requirements  of  a  term that  our  AP 
wishes to inherit.  Also, let us assume that in the original schema the term ‘A’ is 
defined as an ‘integer’, while in our AP we wish to define it as a ‘string’.  XML 
Schema provides no mechanism for performing such an operation.  For this reason we 
proposed to  draw the  original  datatype  of  the  desired  term in a  non-authoritative 
version of the schema and customize the drawn datatype using XSD mechanisms such 
as <list>, <union>, <extension>, <restriction>, <redefine>.  In turn we created a new 
term at the non-authoritative layer based on the adapted datatype.

Second, we noticed that there are no dedicated mechanisms in the XML schemas 
language  to  encode  ‘rich’  semantic  information.  Information  such  as  definitions, 
possible uses of a term, content guidelines, and URIs that facilitate the development 
of tools that edit, present and translate metadata values. For this reason we proposed a 
separate schema named ‘Semantic Information’ that we made available at the non-
authoritative schemas layer (refer to  Figure 2, Figure 3, and Figure 8). This schema 
provides an encoding of the term usage attributes suggested in the CEN workshop 
agreements  reports  (CEN  2003,  CEN  2005a).   Additionally,  we  suggested  that 
implementers should use the <appInfo> element provided by the XSD language to 
encode  values  of  the  term usage  attributes  for  each  adopted  term inline  with  the 
adapted term definition.  Figure 6 and Figure 11 demonstrate this proposed solution. 
This approach allows the list of semantic attributes to be extensible allowing us to 
satisfy application specific requirements of tools that will process the elements.  In 
particular,  in  our  first  case  study,  we  extensively  used  an  additional  term  usage 
attribute, collectively known as ‘autoGenerated’ in order to identify which metadata 
terms will be directly generated by the system and which API functions should be 
called by the underlying application (i.e. ARCO) for the latter to occur. 

Third,  we  noticed  that  metadata  standards  have  structural  differences  in  their 
hierarchy and data models that make the attempt to provide common guidelines on 
how to use them in APs non-trivial.   This was also confirmed in the SCHEMAS, 
MEG Registry and CORES projects.  For example implementation of the DCMES in 
XSD defines a ‘complex type’ named ‘SimpleLiteral’ that is defined in such a way as 
to accept any value but does not allow for restricting the content of a term by the use 
of ‘regular expressions’ and ‘enumerations’.  To overcome this, we suggested the use 
of a dedicated attribute called ‘value’ that can be used to satisfy this type of term 
dependency. Another example is the CIMI XML schema that defines nested types of 
terms.  To overcome this, we had to draw the datatype of the term to be adopted and 
extend its definition by setting the <min> and <max> occurrences of the unwanted 
elements to zero. In that way, we were able to unbundle terms from nested structures 
for reuse in the AP schemas.  The two case studies used to validate the proposed 
framework indicated that the framework is capable of supporting the implementation 



of both nested (e.g. AP-ASIA) and flat (e.g. AMS) APs, as well as allowing APs to 
adopt  metadata  terms  from  both  flat  (e.g.  DC)  and  structured  (e.g.  CIMI  XML 
Schema) metadata schemas. 

Finally,  we  found  that  the  XML Namespace  mechanism is  ideal  for  drawing  on 
multiple element sets to distinguish between authoritative, non-authoritative, and the 
local AP element sets.

Whilst, we have described a framework, which supports the technical implementation 
of APs in XSD, it should be noted that the mixing and matching together of individual 
terms from existing vocabularies requires careful consideration and judgement.  We 
believe this to be a modelling issue, which needs to be addressed during the design of 
the application’s information model.

To  conclude,  in  this  paper,  we  have  discussed  a  generic  framework  by  which 
implementers  may encode APs in  XSD.  The framework presented has a  layered 
structure to explicitly separate the authoritative, the non-authoritative, and the local 
application parts.  This framework is an important step in encoding APs that can be 
dynamically updated with information on the terms they use directly from external 
schemas.  Furthermore, such information can be integrated with semantic information 
into a “one-stop” encoding for the convenience of tool implementers and users.

Acknowledgements
This work has been partly funded by the EU IST Framework 5 Programme under Key 
Action  III  Multimedia  Content  and  Tools,  Action  Line  III.1.6  “Virtual 
Representations of Cultural and Scientific Objects”.

References

ARCO (2004) “Augmented Representation of Cultural Objects Project homepage”. 
ARCO Consortium last accessed October 9th 2006, http://www.arco-web.org/

ARCO Consortium (2004) “The ARCO Data Model and Element Set specification” 
ARCO Consortium, last accessed October 9th 2006, http://www.arco-web.org/ams/

ARCO Consortium (2006) “ARCO Metadata Application Profile Encoding using 
XSD”, last accessed October 17th 2006, http://journals.tdl.org/jodi/rt/suppFiles/jodi-
178/0 

Baker, T., Dekkers, M., Heery, R., Patel, M., Salokhe, G. (2001) “What terms does 
your metadata use? Application profiles as machine-understandable narratives.” 
Journal of Digital Information 2(2), last accessed October 9th 2006, 
http://jodi.ecs.soton.ac.uk/Articles/v02/i02/Baker

Berners-Lee, T., Fielding, R., Irvine, U.C., Masinter, L. (eds.) (1998) “RFC 2396: 
Uniform Resource Identifiers (URI): Generic Syntax”. IETF (Internet Engineering 
Task Force), last accessed October 5th 2006,  http://www.faqs.org/rfcs/rfc2396.html

http://www.faqs.org/rfcs/rfc2396.html
http://jodi.ecs.soton.ac.uk/Articles/v02/i02/Baker
http://www.arco-web.org/ams/
http://www.arco-web.org/


Biron, P. V., Malhotra, A. (eds) (2001) “XML Schema Part 2: Datatypes”. W3C 
Recommendation, last accessed October 9th 2006,  http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/

Bray, T., Hollander, D., Layman, A. (eds.) (1999) “Namespaces in XML”. World 
Wide Web Consortium, last accessed October 9th 2006,  http://www.w3.org/TR/REC-
xml-names

Brickley, D. and Guha, R.V. (eds) (2004) “RDF Vocabulary Description Language 
1.0: RDF Schema”. W3C Recommendation, last accessed October 9th 2006, 
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/

CEN - European Committee for Standardization (2005b) “CWA 15249 - Guidance 
for naming, versioning, evolution and maintenance of element declarations and 
Application Profiles” CEN Workshop Agreement, last accessed October 9th 2006, 
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/cwa15249
.asp

CEN - European Committee for Standardization (2005a) “CWA 15248 - Guidelines 
for machine-processable representation of Dublin Core Application Profiles” CEN 
Workshop Agreement, last accessed October 9th 2006, 
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/cwa+1524
8.asp

CEN - European Committee for Standardization (2003) “CWA 14855 - Dublin Core 
Application Profile Guidelines” CEN Workshop Agreement, last accessed October 9th 

2006, 
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/cwa14855
.asp

CIMI XML Schema (2002) “CIMI XML Schema for SPECTRUM V1.5”. CIMI 
Consortium, last updated October 9th 2006, http://xml.coverpages.org/CIMIv15-
Schema.html

DCMI (2004) “Dublin Core Metadata Initiative homepage”. Last accessed October 
9th 2006, http://dublincore.org/

DCMI XML schemas (2004) “DCMI term declarations represented in XML schema 
language”. DCMI, last accessed October 9th 2006,  (Note: more recent versions are 
now available), http://dublincore.org/schemas/xmls/

Dempsey, L. and Weibel, S. L. (1996) “The Warwick Metadata Workshop: A 
Framework for the Deployment of Resource Description”, D-Lib Magazine, last 
accessed October 9th 2006, http://www.dlib.org/dlib/july96/07weibel.html

Fallside, D. C. (ed.) (2001) “XML Schema Part 0: Primer”. W3C Recommendation, 
last accessed October 9th 2006, http://www.w3.org/TR/2001/REC-xmlschema-0-
20010502/

Gilliland-Swetland, A. J. (1998) “Defining Metadata”. In Introduction to Metadata 
Pathways to Digital Information, edited by Murtha Baca (Unites States of America: 
Getty Information Institute), pp. 1- 8

http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-0-20010502/
http://www.dlib.org/dlib/july96/07weibel.html
http://dublincore.org/schemas/xmls/
http://dublincore.org/
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/cwa14855.asp
http://www.cenorm.be/cenorm/businessdomains/businessdomains/isss/cwa/cwa14855.asp
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/


Grant, A. (1997) SPECTRUM: The UK Museum Documentation Standard, Second 
Edition (UK: The Museum Documentation Association)

Heery, R., Johnston, P., Beckett, D., Steer, D. (2002) “The MEG Registry and 
SCART: complementary tools for creation, discovery and re-use of metadata 
schemas”. In Proceedings of the International Conference on Dublin Core. Metadata 
for e-Communities: supporting diversity and convergence, (Florence: Firenze 
University Press), pp. 125-132, last accessed October 9th 2006, 
http://www.bncf.net/dc2002/program/ft/paper14.pdf

Heery, R., Gardner, T., Day, M., Patel, M. (2000b) “DESIRE Metadata Registry 
Framework Deliverable 3.5”. DESIRE Consortium, last accessed October 9th 2006, 
http://www.desire.org/html/research/deliverables/D3.5/

Heery, R, and Patel, M. (2000) “Application profiles: mixing and matching metadata 
schemas”. Ariadne, No. 25, September, last accessed October 9th 2006, 
http://www.ariadne.ac.uk/issue25/app-profiles/intro.html

Hunter, J. and Lagoze, C. (2001) "Combining RDF and XML Schemas to Enhance 
Interoperability Between Metadata Application Profiles", In Proceedings of  
Proceedings of the tenth Web conference (HongKong: ACM), last accessed October 
9th, 2006 http://www10.org/cdrom/papers/572/ 

IEEE Learning Technology Standards Committee, WG12 (2002) “Final 1484.12.1 
LOM Draft Standard Document”, last accessed October 13th 2006, 
http://ltsc.ieee.org/wg12/20020612-Final-LOM-Draft.html

Johnston, P., Cole, T., Habing, T., Hunter, J., Lagoze, C., Powell, A. (2003) 
“Notes on the W3C XML Schemas for Qualified Dublin Core”. DCMI, last accessed 
October 9th 2006, http://dublincore.org/schemas/xmls/qdc/2003/04/02/notes/

Lee, W., Sugimoto, S., Nagamori, M., Sakaguchi, T., Tabata, K. (2003) “A 
Subject gateway in Multiple Languages: a Prototype Development and Lessons 
Learned”, In Proceedings of International Conference on Dublin Core. Supporting 
communities of discourse and practice — Metadata research and application (Seattle, 
Washington USA: DCMI Press), pp. 59-66, last accessed October 9th 2006, 
http://www.siderean.com/dc2003/203_Paper76.pdf

Mourkoussis, N., White, M., Patel, M., Chmielewski, J., Walczak, K. (2003) 
“AMS — Metadata for Cultural Exhibitions using Virtual Reality”, In Proceedings of 
International Conference on Dublin Core. Supporting communities of discourse and 
practice — Metadata research and application (Seattle, Washington USA: DCMI 
Press), pp. 193-202, last accessed October 9th 2006, 
http://www.siderean.com/dc2003/601_Paper20.pdf

METS (2004) “Metadata Encoding and Transmission Standard homepage”. Last 
accessed October 9th 2006,  http://www.loc.gov/standards/mets/

Nagamori, M., Sugimoto, S. (2004) “A Framework of Metadata Schema for 
Functional Extension of Metadata Schema Registry” In Proceedings of the 
International conference on Dublin Core and metadata applications. Metadata 

http://www.loc.gov/standards/mets/
http://www.siderean.com/dc2003/601_Paper20.pdf
http://www.siderean.com/dc2003/203_Paper76.pdf
http://dublincore.org/schemas/xmls/qdc/2003/04/02/notes/
http://www10.org/cdrom/papers/572/
http://archive.dstc.edu.au/RDU/staff/jane-hunter/www10/paper.html
http://archive.dstc.edu.au/RDU/staff/jane-hunter/www10/paper.html
http://www.ariadne.ac.uk/issue25/app-profiles/intro.html
http://www.desire.org/html/research/deliverables/D3.5/
http://www.bncf.net/dc2002/program/ft/paper14.pdf


across languages and cultures (Shanghai, China: DCMI Press), pp. 3-11, last 
accessed October 9th2006, http://www.slais.ubc.ca/PEOPLE/faculty/tennis-
p/dcpapers2004/Paper_08.pdf

Patel, M., White, M., Mourkoussis, N., Walczak, K., Wojciechowski R., 
Chmielewski, J. (2005) “Metadata Requirements for Digital Museum 
Environments”, International Journal of Digital Libraries, 5(3), Special issue on 
Digital Museums, 179-192, last accessed October 9th 2006, 
http://www.springerlink.com/content/ly1qg5x3p3n98nyy/

Powell, A. and Johnston, P. (2003) “Guidelines for implementing Dublin Core in 
XML”. DCMI, Last accessed October 9th 2006, http://dublincore.org/documents/dc-
xml-guidelines/

Powell, A., Wagner, H., Weibel, S., Baker, T., Matola, T., Miller, E. (2001) 
“Namespace Policy for the Dublin Core Metadata Initiative” DCMI, Last accessed 
October 9th  2006, http://dublincore.org/documents/dcmi-namespace/

SCHEMAS (2000) “Forum for Metadata Schema and implementers”. The 
SCHEMAS project, last accessed October 9th 2006,  http://www.schemas-forum.org/

Thompson, H. S., Beech, D., Maloney, M., Mendelsohn, N. (eds) (2001) “XML 
Schema Part 1: Structures”. W3C Recommendation, last accessed October 9th 2006, 
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/

White, M., Walczak, K., Mourkoussis, N. (2003) “ARCO: Augmented 
Representation of Cultural Objects”, Advanced Imaging, June, pp.14-15, 46

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.schemas-forum.org/
http://dublincore.org/documents/dcmi-namespace/
http://dublincore.org/documents/dc-xml-guidelines/
http://dublincore.org/documents/dc-xml-guidelines/
http://www.springerlink.com/content/ly1qg5x3p3n98nyy/
http://www.slais.ubc.ca/PEOPLE/faculty/tennis-p/dcpapers2004/Paper_08.pdf
http://www.slais.ubc.ca/PEOPLE/faculty/tennis-p/dcpapers2004/Paper_08.pdf


Author details

Nicholaos holds a PhD in Computer Science and holds a MEng (Hons) in Computer 
Systems Engineering from the University of Sussex.  Nicholaos worked as a research 
officer  in  the  EU  funded  project  titled  “Augmented  Representations  of  Cultural 
Objects”  and  he  is  currently  working  as  a  research  fellow in  the  EPSRC funded 
project  titled  “Quantifying  fidelity  for  virtual  environment  simulations  employing 
schema assumptions”.  His research interests relate to: selective graphics rendering; 
cognition  and  human  memory;  positive  transfer  of  training  in  VR  simulations; 
perception  and  human  factors;  digital  libraries;  metadata  for  digital  museum 
environments;  XML  frameworks  for  metadata  interoperability;  and  software 
architectures for digital cultural heritage and education.  

Manjula holds a PhD in Computer Science (computer graphics and animation) from 
the University of Bath, as well as an MSc in Systems Design from the University of 
Manchester and a BSc (Hons) in Computational Science and Economics from the 
University  of  Leeds.  Prior  to  working at  UKOLN, she worked as  a  post-doctoral 
research  officer,  lecturer  and  computer  manager  in  the  School  of  Mathematical 
Sciences at the University of Bath.  Manjula has been working as part of the research 
and development  team at  UKOLN since August  1998.  She has been involved in 
numerous  EU, EPSRC and JISC research projects.   Her current  research interests 
relate to: digital libraries; metadata and ontologies; knowledge representation and the 
semantic  web;  digital  repositories  and  preservation;  autonomous  software  agents; 
virtual  and  augmented  reality  representation  of  cultural  artefacts  and  their  use  in 
various domains such as digital museums and learning environments.

Martin holds a PhD in Computer Science (3D Computer Graphics), and a BSc (Hons) 
in Computer Systems Engineering from the University of Sussex.  Prior to Sussex 
Martin worked as an Electronic  Engineer in the UK defence and communications 
industry.  While at Sussex Martin has worked on many EU research projects as a 
research fellow and project manager, and was the project coordinator for the ARCO 
project.  He has authored or co-authored 130 scientific papers on graphics, virtual and 
augmented reality and e-Learning.  Martin's research interests include software and 
hardware  for  computer  graphics,  virtual  and  augmented  reality,  building  haptic 
interfaces  for  virtual  environments,  digital  preservation  and  virtual  reconstruction 
related to virtual  and augmented reality representations of  cultural  heritage use in 
museum and education domains.


	1Motivation and related work
	2Fundamental concepts
	2.1APs and the layered structure
	2.2Uniform Resource Identifier 
	2.3  XML Namespace Mechanism
	2.4Principle of appropriate identification and metadata documentation
	2.5Descriptive header

	3The Proposed XSD Framework
	3.1Terminology
	3.2The layered XSD framework
	3.3General guidelines
	3.4Modelling and implementation guidelines

	4Experimental studies validating the framework
	4.1Experimental Study 1: AMS AP
	4.2Experimental Study 2: IPL – ASIA AP

	5Conclusion
	Acknowledgements
	References
	Author details

