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Abstract

Multimedia style sheet systems uniformly use a constraint-based model of lay-
out. Constraints provide a uniform mechanism for all aspects of style management
and layout and are better-suited to non-textual media than flow models.

We have developed a prototype style sheet system, Proteus, and have used it
with a variety of document types, including program source code. This work has
exposed a critical performance problem in constraint-based style sheet runtime
systems: memory usage. Existing constraint systems treat cached attribute values
and constraints as first-class objects, each with its own storage. Program syntax
trees are very large and the constraint data for a medium-sized source file can easily
consume tens of megabytes of main memory. This scalability problem would be
exposed by any document of any type containing thousands of objects.

We present here a new constraint-based runtime system that is substantially
faster and dramatically more space-efficient than its predecessor, which had first-
class constraint objects. The improved performance is the result of exploiting im-
portant common cases and a sophisticated constraint representation that allows
considerable sharing of information between individual constraints.

1 Introduction

Multimedia style sheet systems [8, 15] uniformly use a constraint-based model of lay-
out, because constraints are better suited to non-textual media than the flow models
used in text-oriented style sheet systems [4, 7, 13]. Some multimedia style sheet sys-
tems [15] only use constraints for layout, but in our work on the Proteus style sheet
system [3, 12] and the PSL style sheet language [10], we use constraints as the foun-
dation of the entire style management process. This approach gives the PSL language
uniform and relatively simple semantics and the runtime system of Proteus exhibits a
similar uniformity in its underlying mechanisms.
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We have been using Proteus to manage style information for program source code
in the Ensemble software development environment [2], and in the process have ex-
posed a serious limitation to the scalability of existing constraint-management systems:
memory usage. The central problem is that existing constraint systems [5, 14] treat the
attributes of document elements and the constraints between them as first-class objects.

Program syntax trees can be quite large. In Ensemble, the abstract syntax tree for
a 21 line Java fragment contains 91 lexemes (the text fragments that must be laid out
and displayed) and over 500 nodes. By extrapolation, a 1000-line program would have
nearly 4300 lexemes and about 24,000 nodes.

Ensemble’s text formatter requires Proteus to manage the values of 22 style at-
tributes for each node. This means that, for a 1000-line program, Proteus would have
to manage about 500,000 independent attribute values. If each value is represented by
a first-class object, then for large programs (or any other large document), the memory
requirements of Proteus’s runtime system must be measured in megabytes. Further-
more, for many style sheets, there are more constraints than attribute values and if con-
straints are represented by first-class objects, even more megabytes will be consumed.
Memory usage at this level places tremendous pressure on system resources, both by
consuming available memory and by slowing performance due to virtual memory page
faults.

Prior to the research described in this paper, Proteus used a runtime system origi-
nally developed for the Shilpe style sheet system [9]. This runtime system does indeed
treat attribute values and constraints as first-class objects and it uses about 2.3 kilobytes
of memory per document node.

This paper describes a new runtime system, called Protean, that reduces memory
consumption by a factor of 8.8 and improves runtime performance by a factor of 2. Pro-
tean’s improved performance results from the identification of certain common cases
that can be handled without using first-class constraint or attribute objects and from a
novel representation for constraint information in the less common cases.

Section 2 describes the original runtime system of Proteus. Section 3 presents the
new runtime system and our initial performance results. Section 4 gives our conclu-
sions.

2 The Shilpe Runtime System

Prior to this research, Proteus used a runtime system originally developed for Shilpe [9].
The Shilpe runtime system was designed and implemented specifically for Proteus. It
uses the incremental attribute evaluation algorithm developed by Hudson [5] for the
Higgens user interface management system [6]. The Higgens UIMS was used in an
interactive editor for graph-structured music documents. Neither the Higgens UIMS or
Hudson’s attribute evaluation algorithm have been widely used, though the algorithm
is recognized as a flexible, lightweight alternative to the attribute grammar technol-
ogy that is popular for defining and evaluating constraints in programming language
analysis [1].

Hudson’s algorithm uses a mix of eager and lazy techniques to achieve good per-
formance. For each node, the most recently computed value of each attribute is cached.
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The algorithm eagerly propagates information about the invalidation of these cached
values while updating them lazily. When evaluating all attributes from scratch, its per-
formance is linear in the size of the document. When updating attributes in response
to an editing change, its worst-case performance is linear in the number of attribute
values dependent on the change.

In Shilpe, attribute invalidation is performed by maintaining a data structure called
a dependency chain, which keeps track of the attributes that must be invalidated due to
an invalidation or changed caused by an editing operation. For example, the following
rule constraints a node’s Width attribute to be the same as its parent’s Width.

Width = Parent.Width;

Given this rule, whenever the parent’s Width attribute value is changed or invalidated,
the Width attribute of the child should also be invalidated. A dependency chain is
a data structure that keeps track of those attributes that must to be invalidated due to
changes in other attribute values or in the structure of the document caused by editing
operations.

2.1 Problems with Shilpe

The dependency chains consume a large amount of memory, even for small documents,
for two reasons:

1. The system represents all attribute dependencies using the same structure. This
ignores two important common cases: inheritance and bounding box attributes.

� Inheritance of formatting attributes is very common in style sheets for tree-
structured documents. Inheritance is one kind of constraint, so each inher-
itance relationship must be represented by a dependency chain.

� Proteus’s box layout system maintains complete bounding box information
for all document nodes. A node’s bounding box is computed from (i.e.
constrained by) the bounding boxes of each of its children, which must be
represented by a (often long) dependency chain.

2. The dependency chain representation in Shilpe is not particularly space-efficient.
Even if the aforementioned special cases were handled more efficiently, memory
consumption for dependency chains would remain a problem.

The Shilpe runtime system was instrumented and its memory usage analyzed for
an application that requires the maintenance of 16 attribute values for each node. The
results of the experiment are shown in Figure 1. These results indicate that for each
additional node, memory usage increased by almost 2.3 Kb. For large documents (over
10,000 nodes) this can result in very high memory usage.

The space-efficiency problems seen with the Shilpe runtime system are not unique
to it or to Hudson’s algorithm. They would also be observed with any other constraint
system that treats cached attribute values and constraints as first-class objects, such as
the SkyBlue constraint solver [14]. Representing cached values and constraints as first-
class objects appears to be common in constraint systems and it is certainly the most
straightforward design approach.
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Number Shilpe Protean
of Nodes Size of Overall Size of Overall

dependency memory dependency memory
data structures usage data structures usage

10 17.75 Kb 33.76 Kb 80 bytes 18.37 Kb
11 19.94 Kb 36.06 Kb 88 bytes 18.63 Kb
12 21.95 Kb 37.90 Kb 96 bytes 18.90 Kb
13 24.51 Kb 40.20 Kb 104 bytes 19.15 Kb

500 1095.75 Kb 1160.76 Kb 3.91 Kb 140.87 Kb
1000 2195.75 Kb 2310.76 Kb 7.81 Kb 265.87 Kb

10000 21995.75 Kb 23010.76 Kb 78.12 Kb 2515.87 Kb

Figure 1: Memory usage of Shilpe vs. Protean. Shilpe’s memory usage grows at a rate
8.8 times higher than Protean’s memory usage. (This experiment was performed on a
document that used a style sheet containing 16 attributes.)

3 The Protean Runtime System

The Protean runtime system preserves the approach to incremental attribute evaluation
that was used in Shilpe, but uses a more sophisticated algorithm to handle dependencies
along with very compact runtime data structures to improve the memory usage and
runtime performance.

Each node in the tree has two parts: a cache, and dependency information. The
framework for this algorithm is a simple, yet very effective representation of the cache
and dependency information.

3.1 Cache

A central premise behind Hudson’s attribute evaluation algorithm is that caching of
attribute values leads to critical runtime performance gains. We performed an experi-
ment and discovered that Protean, on average, takes 27.64 � sec to determine the value
of a node’s attribute when values were cached, while it takes 279.4 � sec when values
were not cached — a factor of 10 performance difference. The runtime performance
when attribute values are not cached leads to poor and unacceptable response times
that makes the system almost unusable for large documents, especially in interactive
applications.

Each node has an attribute cache, which is a set of value/status-flag pairs stored as
an array of two-word values, and a packed array of 4-bit status flags.

A typical medium in the Ensemble system has about 20 attributes. Since 4 bits 1

are required to represent each status flag, the entire cache status flag representation for
each node would take 80 bits (or 12 bytes on a modern workstation, rounded to the
next word). For each node, the storage for cached attribute values would be 160 bytes.

1In PSL, an attribute value can be computed in four different methods: a node-specific rule, a default
rule, an implicit rule, and a global default value. Each rule has unique odd and even values to represent the
valid and invalid states. An additional value to represent complete invalidity makes a total of 9 bits, which
are represented as 4 bits.
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VertPos:Y = LeftSib.Y;

Figure 2: A rule defined for the “RAYS” node in the style sheet shown in Figure 7.
The rule asserts that the node’s VertPos:Y attribute is constraint by its left sibling’s
Y attribute.

AccessOp(Y) � LeftSib � VertPos:Y

Figure 3: Inverse path for the rule shown in Figure 2

3.2 Invalidating the Cache

When an editing operation is performed, attribute values can change. Such changes
trigger a chain of cache status flag invalidations to invalidate both the attribute values
directly affected by it and the ones indirectly affected due to dependencies caused by
rules specified in the style sheet.

3.3 Dependencies

Each node contains a data structure, the dependency list, which stores information
about the cached values (in this node or another) that are dependent on each of the
node’s attributes. Protean implements a dependency list using a very compact bit rep-
resentation. The runtime system performs the following administrative tasks at startup
time: (1) style sheet rules are stored in a shared data structure called the component
array, (2) a mechanism, called an inverse path, is established to reach attributes that
depend on it, (3) the component array is ordered, and (4) a dependency list is created
in each node.

3.3.1 The Component Array

Each style sheet rule is internally represented as a list of its atomic components. For
the style sheet rule in Figure 2, the atomic components are: a rule header for attribute
VertPos:Y; a tree navigation function (LeftSib); and an access operation (on at-
tribute Y).

The list of atomic components for a rule is linked together by storing a forward
pointer in each component. Our implementation arranges the components as infix ex-
pressions. When the rule needs to be evaluated, the list of components is followed in
the forward direction. The details of this implementation, however, are not important
to the algorithm presented in this paper.

3.3.2 Inverse Paths

When an attribute is invalidated due to an editing operation, attributes that are depen-
dent on it must be invalidated. Protean uses a mechanism called an inverse path to
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reach the affected attributes. The key to determining the inverse path is an observation
in the PSL style sheet language: Dependencies between attributes can arise only from
attribute-access operations and tree navigation functions. Such components of a rule
are called dependency-causing components.

An inverse path for a rule is created by storing backward pointers in the dependency-
causing components of a rule. For the rule that we have been discussing (in Figure 2),
the inverse path is shown in Figure 3.

The process of invalidating affected attributes follows the inverse path (backward
pointers) in a rule’s component list and inverts the meaning of each tree navigational
component, in order to locate the nodes that are dependent by the rule. Given the
rule shown in Figure 2, if “RAYS” node’s left sibling’s Y attribute were invalidated,
the LeftSib tree navigation function would be inverted as RightSib to reach the
“RAYS” node.

The Parent tree navigation function does not have a unique inverse when there
are multiple children. However, the algorithm maintains dependency information in
the parent and the child to resolve this problem. The details of marking (establishing)
dependencies will be described in section 4.4.

3.3.3 Ordering the Component Array

The rules specified in the style sheet are decomposed into its atomic components and
stored in a component array, which is logically divided into three contiguous blocks:
the attribute-access block, the navigation block, and the miscellaneous block. The
attribute-access block contains all components that access attributes; the navigation
block contains all components that are tree navigation functions; and the miscellaneous
block contains all components that are neither an attribute-access operation nor a tree
navigation function. Such components include constants, rule headers, and arithmetic
operators.

Figure 6 shows the component array resulting from parsing the style sheet shown
in Figure 7. The component array is a single data structure shared by all nodes.

3.3.4 Creating Dependency Lists

The dependencies between attributes are represented using a dependency list in each
node. The dependency list is implemented as a packed array of bits, a compact data
structure compared to heavier-weight data structures used in other constraint-based
style sheet runtime systems.

The ordering of the component array places the dependency-causing components in
a contiguous section of the array. This contiguity allows us to create a dependency list
for each node, where each bit in the dependency list has a corresponding dependency-
causing component in the component array.

3.4 Marking Dependencies

The relationship between two attributes is represented by setting the appropriate bits in
the dependency list of each of the relevant nodes. Given the rule shown in Figure 2,

6



RAY

Cache Status

Cache Status Cache Status

Dependencies

Dependencies Dependencies

SUN

MASS

Figure 4: A sample tree depicting the cache and dependency list for each node.
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its dependency-causing components are listed in the component array at indices 17
(LeftSib) and 8 (access on attribute Y), as shown in Figure 6. If you apply this rule
to the tree shown Figure 4, the dependency can be represented by setting bits 8 and 17
in “MASS” node’s dependency list. The dependency representation of the “MASS”
node is shown in Figure 5.

Since the rule shown in Figure 2 constraints the “RAYS” node’s VertPos:Y at-
tribute to “MASS” node’s Y attribute, if the “MASS” node’s Y attribute were inval-
idated, the “RAYS” node’s VertPos:Y attribute must be invalidated. This is done
by searching the attribute-access block in the component array to determine if there
are components that access the Y attribute. In our example, the component at index
6 in the component array accesses the attribute Y. So the “MASS” node’s bit 8 of the
dependency list is checked to see if it is set. Since the bit is set, starting from the
component at index 8, the inverse path (shown in Figure 3) is followed to locate the af-
fected attribute. When the affected attribute is located, it is invalidated and the process
continues recursively to invalidate attributes that are affected by the recent invalidation.

Recall from earlier that when following an inverse path, the Parent navigation
function can give rise to ambiguity when there are multiple children. This problem is
resolved by identifying the Parent tree navigation function’s component index in the
component array, and setting the bit both in the child’s and parent’s dependency lists.
When a Parent function is encountered while following an inverse path, the bit for
that component is matched with the children to identify the correct child (or children if
the rule affects multiple children).

3.5 Memory Usage and Runtime Performance of Protean

Shilpe and Protean were compared in a series of systematic tests to determine their
memory usage and runtime performance. All tests were performed on an HP 715/80
workstation with 64MB RAM and a clock speed of 80MHZ that ran the HP-UX 9.05
operating system. The tests used the style sheet configuration of Ensemble’s text
medium, which has eighteen style and layout attributes. Memory usage per node would
increase for both Shilpe and Protean if additional attributes were used.

A comparison of the memory usage of the Protean and Shilpe runtime systems was
presented earlier in Figure 1. Those results show that Shilpe requires an average of
about 2.3 Kbytes per document node while Protean requires only .26 Kbytes per node
— a factor of 8.8 improvement.

The runtime performance of Protean was also compared to that of Shilpe. The re-
sults showed that, on average, Shilpe takes 58.23 � sec to evaluate an attribute while
Protean takes only 27.64 � sec — a factor of two improvement. Whether this improve-
ment in runtime performance was due to a more highly-tuned implementation or due
to improved caching (because of a smaller memory footprint) was not determined.

3.6 Assumptions and Limitations

The Protean runtime system is quite general and efficient, a presentation of its features
is not complete without a discussion of its assumptions and limitations.
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Cache Status

MASS

Dependencies

671617
1 1 1

Figure 5: Bits 8 and 17 are set to represent the dependencies caused by the rule in Fig-
ure 2.

Index Attribute/ Node Name Rule for
Function/ Attribute
Constant

...
6 X RAYS HorizPos: X
...
8 Y RAYS VertPos: Y
...
14 Parent MASS Width
15 Parent MASS Height
16 LeftSib RAYS HorizPos:X
17 LeftSib RAYS HorizPos:Y
...
30 Width MASS (rule header)
31 * MASS Width
32 0.666667 MASS Width
33 Height MASS (rule header)
34 * MASS Height
35 0.666667 MASS Height
36 HorizPos:X RAYS (rule header)
37 VertPos:Y RAYS (rule header)

Figure 6: A portion of the component array resulting from parsing the style sheet shown
in Figure 7. Indices 0-9 represent the attribute-access block, indices 10-21 represent
the navigation block, and indices 22-37 represent the miscellaneous block.
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MASS {
Width = Parent . Width * 0.666667;
Height = Parent . Height * 0.666667;
BgColor = "yellow";
Fill = BG_SOLID;

}
RAYS {

/* This will automatically space out all
rays radially around the sun’s mass */

HorizPos:X = LeftSib . X;
VertPos:Y = LeftSib. Y;
Linewidth = 5.0;

}

Figure 7: A portion of a style sheet.

� Hudson’s attribute evaluation algorithm was originally designed for use with
graph-structured music documents [6]. The Proteus style sheet system assumes
that its documents are tree-structured, but the Protean runtime system is not re-
stricted to tree-structured documents.

� In general, Protean requires that dependency-causing components of style rules
can be inverted unambiguously. The one violation of this assumption in Proteus
(the Parent function) is handled as a special case.

� Protean is a “one-way” constraint system. The fact that an attribute value
�

is
dependent on an attribute value � does not mean that � is dependent on

�
. In

contrast, the SkyBlue constraint solver [14] is an example of a “multi-way” con-
straint system, supporting dependencies in both directions. Multi-way constraint
systems are interesting and very useful for certain graphic-object transforma-
tional applications in which all attributes are subject to change from external
forces (such as users), but the one-way constraint model is simpler and appears
to be well-suited to the multimedia style sheet task.

� SkyBlue also provides a general solution to the problem of cyclic constraints.
Protean is capable of detecting cycles and will not crash or infinitely loop be-
cause of them, but does not guarantee that useful attribute values will be com-
puted when cycles are present in the constraint rules.

4 Conclusions and Future Work

Protean is a new runtime system for the Proteus multimedia style sheet system. It is
distinguished by its memory efficiency — it uses over eight times less memory per
document node than its algorithmically-similar predecessor, the Shilpe runtime sys-
tem. Protean uses a novel system of bit arrays to represent dependencies between the
attribute values of document elements, instead of the multi-byte first-class objects used
by Shilpe.
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Even with these improvements in space efficiency, the memory required to main-
tain style sheet information for a 1000-line Java program would still be about six
megabytes, which might be tolerable given the recent rapid decline in memory prices,
but is still excessive. We would hope to reduce memory usage to the point that style
information is no longer the dominant factor in memory consumption. This will be
difficult for program source code represented only in ASCII. However, modern pro-
gramming environments can require hundreds or thousands of bytes of data per pro-
gram statement in order to support their analyses. In such an environment, it may be
that a few hundred bytes of style information is an acceptable price for quality program
presentation.

We expect to continue research into ways to reduce memory consumption. Some
ideas that we will explore are

� Improving the component array data structure so that components that appear in
multiple rules can be shared;

� Using a sparse representation for cached attribute values; and

� Representing layout information (especially bounding boxes) in relative coordi-
nates, rather than absolute coordinates.

Our future research will continue to explore style sheet systems and their applica-
tions to multimedia documents and programming environments. We seek to improve
the power and ease of use of style sheet languages and to develop direct manipulation
tools for style sheet development. We are continuing the development of the model of
media used in configuring Proteus [11] and plan to extend it to better address issues
of user interaction. Finally, the best document model for integrating program source
code and multimedia documentation has not been identified and we hope to address
this issue.
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